首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this report, a polyester polyurethane (PU) degrading bacterium, designated as strain MZA-85, was isolated from soil through enrichment. The bacterium was identified through 16S rRNA gene sequencing; it was completely matched with Pseudomonas aeruginosa type strain. The degradation of PU film pieces by P. aeruginosa strain MZA-85 was investigated by scanning electron microscopy (SEM), Fourier transformed infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM micrographs of PU film pieces, treated with strain MZA-85, revealed changes in the surface morphology. FTIR spectrum showed increase in organic acid functionality and corresponding decrease in ester functional group. GPC results revealed increase in polydispersity, which shows that long chains of polyurethane polymer are cleaved into shorter chains by microbial action. The bacterium was found to produce cell associated esterases based on p-Nitrophenyl acetate (pNPA) hydrolysis assay. 1,4-Butanediol and adipic acid monomers were detected by gas chromatography–mass spectrometry (GC–MS), which were produced as a result of hydrolysis of ester linkages in PU by cell bound esterases. Strain MZA-85 not only depolymerized PU but also mineralized it into CO2 and H2O, as indicated by increase in cells growth in the presence of degradation products as well as detection of CO2 evolution through Sturm test. From the results presented above, it is finally concluded that P. aeruginosa strain MZA-85, as well as its enzymes, can be applied in the process of biochemical monomerization for the pure monomers recycling.  相似文献   

2.
A new aerobic bacterium was isolated from the sediment of a freshwater pond close to a contaminated site at Amponville (France). It was enriched in a fixed-bed reactor fed with 2,6-dichlorophenol (2,6-DCP) as the sole carbon and energy source at pH 7.5 and room temperature. The degradation of 2,6-DCP followed Monod kinetics at low initial concentrations. At concentrations above 300 μM (50 mg · liter−1), 2,6-DCP increasingly inhibited its own degradation. The base sequence of the 16S ribosomal DNA allowed us to assign the bacterium to the genus Ralstonia (formerly Alcaligenes). The substrate spectrum of the bacterium includes toluene, benzene, chlorobenzene, phenol, and all four ortho- and para-substituted mono- and dichlorophenol isomers. Substituents other than chlorine prevented degradation. The capacity to degrade 2,6-DCP was examined in two fixed-bed reactors. The microbial population grew on and completely mineralized 2,6-DCP at 2,6-DCP concentrations up to 740 μM in continuous reactor culture supplied with H2O2 as an oxygen source. Lack of peroxide completely stopped further degradation of 2,6-DCP. Lowering the acid-neutralizing capacity of the medium to 1/10th the original capacity led to a decrease in the pH of the effluent from 7 to 6 and to a significant reduction in the degradation activity. A second fixed-bed reactor successfully removed low chlorophenol concentrations (20 to 26 μM) with hydraulic residence times of 8 to 30 min.  相似文献   

3.
To evaluate the effects of different gamma irradiation doses on PEGd,lPLA and PEG-PLGA multiblock copolymers. The behaviour of the multiblock copolymers to irradiation was compared to that of PLA, PLGA polymers. PEGd,lPLA, PEG-PLGA, PLA and PLGA polymers were irradiated by using a 60Co irradiation source at 5, 15, 25 and 50 kGy total dose. Characterization was performed on all samples before and after irradiation, by nuclear magnetic resonance (NMR), infrared absorption spectrophotometry (FTIR) and gel permeation chromatography (GPC). The effect of gamma irradiation on polymer stability was also evaluated. Results of NMR and FTIR suggest an increase in -OH and -COOH groups, attributed to scission reactions induced by irradiation treatment. Data of GPC analysis showed that the weight average molecular weight (Mw) of polymer samples decreased with increasing irradiation dose. The extent of Mw degradation expressed as percentage of Mw reduction was more prominent for polymers with high molecular weight as PEGd,lPLA and PLA. The dominant effect of gamma-irradiation on both polymer samples was chain scission. The multiblock copolymer PEGd,lPLA presented higher sensitivity to irradiation treatment with respect to PLA, likely due to the presence of PEG in the matrix. The effect of gamma irradiation continues over a much longer period of time after gamma irradiation has been performed. It is suggested that the material reacts with oxygen to form peroxyl free radicals, which may further undergo degradation reactions during storage after irradiation.  相似文献   

4.
采用原位熔融共聚法,以淀粉和乳酸为原料,制备改性淀粉聚乳酸接枝共聚物,对共聚反应机理进行初步探讨.结果表明,淀粉经PEG-400和马来酸酐增塑改性处理反应活性增强,与乳酸反应生成的淀粉聚乳酸接枝共聚物分子量Mw为6.921×10~4,Mn为4.789×10~4,分子量分布Mw/Mn为1.445.共聚物在PBS缓冲溶液中进行降解测试,结果为6天后质量损失一半.  相似文献   

5.
6.
Anaerobic degradation of the sulfated polysaccharide carrageenan was investigated by batch digestion of the red macroalga Eucheuma cottonii. During a 10-week incubation, ca. 60% of the starting E. cottonii biomass was fermented to CO2, methane, and volatile fatty acids (predominantly acetate). Carrageenan degradation paralleled the loss of total biomass, suggesting no preferential degradation or preservation. After 10 weeks of incubation, the carrageenan content of the remaining biomass was 51%, as opposed to 61% of the original E. cottonii biomass. Carrageenan recovered after 10 weeks of digestion had a lower average molecular weight (319,000 versus 510,000) and formed solutions with considerably lower viscosities than did intact carrageenan. The percent C and percent N content of the particulate material in the digestors increased over time, probably as a result of microbial growth. In contrast, the percent S content decreased continuously; the loss of sulfur was most likely a result of the hydrolysis of carrageenan. Results from this study indicate that it is not economically viable to process E. cottonii simultaneously for hydrocolloids and methane.  相似文献   

7.
A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography–mass spectrometry (GC–MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O.  相似文献   

8.
Aminoethyl modified chitosan derivatives (AEMCSs) with different molecular weight (Mw) were synthesized by grafting aminoethyl group on different molecular weight chitosans and chitooligosaccharide. FTIR, (1)H NMR, (13)C NMR, elemental analysis and potentiometric titration results showed that branched polyethylimine chitosan was synthesized. Clinical Laboratory Standard Institute (CLSI) protocols were used to determine MIC for Gram-negative strain of Escherichia coli under different pH. The antibacterial activity of the derivatives was significantly improved compared with original chitosans, with MIC values against E. coli varying from 4 to 64 μg/mL depending on different Mw and pH. High molecular weight seems to be in favor of stronger antibacterial activity. At pH 7.4, derivatives with Mw above 27 kDa exhibited equivalent antibacterial activity (16 μg/mL), while oligosaccharide chitosan derivative with lower Mw (~1.4 kDa) showed decreased MIC of 64 μg/mL. The effect of pH on antibacterial activity is more complicated. An optimal pH for HAEMCS was found around 6.5 to give MIC as low as 4 μg/mL, while higher or lower pH compromised the activity. Cell integrity assay and SEM images showed evident cell disruption, indicating membrane disruption may be one possible mechanism for antibacterial activity.  相似文献   

9.
Periploca sepium Bunge (Chinese silk vine) is a woody climbing vine belonging to the family Asclepiadaceae. It originally comes from Northwest China. Periploca resembles the Para-rubber tree, Hevea brasiliensis, regarding a similar body plan to produce a milky exudate containing rubber latex. The Periploca plant was assessed as a rubber-producing plant by rubber structure elucidation and its molecular weight distribution. A rubber fraction purified from the milky exudate was subjected to 1H NMR analysis, and a characteristic signal derived from cis-polyisoprene was observed. In addition, when the molecular weight distribution of rubber components in the exudate was measured (using size-exclusion chromatography), the number-average molecular weight (Mn), weight-average molecular weight (Mw), and polydispersity (Mw/Mn) were estimated to be Mn = 1.3 x 10(5), Mw = 4.1 x 10(5), and Mw/Mn = 3.1, respectively. Furthermore, the presence of polyisoprene, with Mn = 4.0 x 10(4), Mw = 7.6 x 10(4), and Mw/Mn = 2.5, was also confirmed in plantlets obtained from shoots as a result of tissue culture.  相似文献   

10.
Antioxidant activity in α- and β-chitosan at a wide range of molecular weight (Mw) and chitosan concentration (CS) was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing ability, chelating ability, and hydroxyl radical scavenging activity. The form of chitosan (FC) had significant (P <0.05) effect on all measurements except DPPH radical scavenging activity, and antioxidant activity was dependent on Mw and CS. High Mw (280–300 kDa) of β-chitosan had extremely lower half maximal effective concentrations (EC50) than α-chitosan in DPPH radical scavenging activity and reducing ability. The 22–30 kDa of α- and β-chitosan showed significantly (P <0.05) higher activities in DPPH radical scavenging, reducing ability, and hydroxyl radical scavenging than samples at other Mw, while chelating ability was the highest in 4–5 kDa chitosan. CS had significant effect on all measurements and the effect was related to Mw. The antioxidant activity of 280–300 kDa chitosan was affected by coil-overlap concentrations (C1) in the CS range of 4–10 mg/mL, forming entanglements. Reducing ability and hydroxyl radical scavenging activity were more predominant action in antioxidant activity of chitosan as shown by the lower EC50 values than those in other antioxidant measurements.  相似文献   

11.
Dextran, a homopolyner consisting almost solely of 1,6-α- linked glucose units, was separated into five well defined, narrow range, low molecular weight fractions by sequential ultrafiltration, after controlled lydrolysis. A commercially available purified dextran preparation, D 10, with a weight average molecular weight (Mw) of 10,980, was hydrolyzed with HCl to an average molecular weight of 4200. By ultrafiltration through a series of graded anisotropic cellulose acetate membranes of decreasing sore sizes, molecular weight fractions having Mw's of 7100, 6175, 4320, 2810 and 1565 were obtained. From Mw and sedimentation (S) values, the frictional coefficients were calculated for each fraction and the asymmetry ratios obtained therefrom.  相似文献   

12.
A commercial λ-carrageenan preparation was dissolved in 3·0 ammonium sulphate and loaded onto a Sepharose CL-4B column equilibrated with the same solvent. Fractionation was carried out by stepwise elution with decreasing concentrations of ammonium sulphate at a low temperature. Each fraction obtained was analysed for sulphur content, 3,6-anhydro- -galactose content, and molecular weight (Mw). The Mw of all the fractions was lower than the Mw of the starting material. The species with the highest sulphur content and lowest 3,6-anhydro- -galactose content, a composition closest to that of an ideal structure, was recovered in the 1·5 fraction.  相似文献   

13.
Pectic polysaccharides solubilized in vivo during ripening, were isolated using phenol, acetic acid, and water (PAW) from the outer pericarp of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang and A.R. Ferguson var deliciosa `Hayward') before and after postharvest ethylene treatment. Insoluble polysaccharides of the cell wall materials (CWMs) were solubilized in vitro by chemical extraction with 0.05 molar cyclohexane-trans-1,2-diamine tetraacetate (CDTA), 0.05 molar Na2CO3, 6 molar guanidinium thiocyanate, and 4 molar KOH. The Na2CO3-soluble fraction decreased by 26%, and the CDTA-soluble fraction increased by 54% 1 day after ethylene treatment. Concomitantly, an increase in the pectic polymer content of the PAW-soluble fraction occurred without loss of galactose from the cell wall. The molecular weight of the PAW-soluble pectic fraction 1 day after ethylene treatment was similar to that of the Na2CO3-soluble fraction before ethylene treatment. Four days after ethylene treatment, 60% of cell wall polyuronide was solubilized, and 50% of the galactose was lost from the CWM, but the degree of galactosylation and molecular weight of pectic polymers remaining in the CWMs did not decrease. The exception was the CDTA-soluble fraction which showed an apparent decrease in molecular weight during ripening. Concurrently, the PAW-soluble pectic fraction showed a 20-fold reduction in molecular weight. The results suggest that considerable solubilization of the pectic polymers occurred during ripening without changes to their primary structure or degree of polymerization. Following solubilization, the polymers then became susceptible to depolymerization and degalactosidation. Pectolytic enzymes such as endopolygalacturonase and β-galactosidase were therefore implicated in the degradation of solubilized cell wall pectic polymers but not the initial solubilization of the bulk of the pectic polymers in vivo.  相似文献   

14.
Paenibacillus sp. EJP73 has been previously demonstrated as a mycorrhization helper bacterium (MHB) for the Lactarius rufusPinus sylvestris symbiosis in both laboratory and glasshouse experiments. In the present study, the effect of Paenibacillus sp. EJP73 metabolites on L. rufus EO3 pre-symbiotic growth was tested in two agar plate-based systems. Specifically, volatile metabolites were investigated using a dual plate system, in which the presence of strain EJP73 resulted in a significant negative effect on L. rufus EO3 hyphal radial growth but enhanced hyphal branching and reduced internode distance. Soluble metabolites produced by strain EJP73 were tested on L. rufus EO3 growth in single-agar plate assays by incorporating bacterial cell-free whole or molecular weight fraction spent broth into the agar. Whole spent broth had a negative effect on hyphal growth, whereas a low molecular weight fraction (100–1,000) promoted colony radial growth. Headspace and spent broth analysis of strain EJP73 cultures revealed 2,5-diisopropylpyrazine to be the most significant component. Synthesised 2,5-diisopropylpyrazine and elevated CO2 (2,000 ppm) were tested as specific volatile metabolites in the dual plate system, but neither produced the response shown when strain EJP73 was present. Increased pre-symbiotic hyphal branching leading to increased likelihood of plant infection may be an important MHB mechanism for strain EJP73. Although the precise signal molecules could not be identified, the work suggests a number of metabolites may work synergistically to increase L. rufus root colonisation.  相似文献   

15.
The degradation of native and pretreated nitrocellulose (NC) by the microscopic fungus Fusarium solani VKM F-819 and a mixed culture of the fungus with a sulfate-reducing bacterium Desulfovibrio desulfuricans VKM B-1388 has been studied. It has been shown that NC pretreatment with UV radiation and ozone promoted its subsequent biodegradation. The degradation of the thus treated NC by a mixed culture of F. solani and D. desulfuricans was the most effective as compared to all other treatment options. The NC nitrogen content decreased from 13.38 to 10.03%; the number average (Mn) and weight average (Mw) molecular masses decreased by three and two times, respectively. These magnitudes were achieved after 5 days of incubation of the pretreated NC. The obtained data can be used to further develop NC degradation technology.  相似文献   

16.
Bacillus lentus BI377, isolated from textile effluent-contaminated soil, was able to degrade 97% and 92% of Reactive Red 120 dye when 1200 and 1500 mg/l, respectively, of dye was added to nutrient broth (NB) at 35 °C within 12 h. UV-vis spectroscopy, GC-MS, FTIR and 1H NMR revealed the formation of catechol which may be further utilized by the bacterium via the TCA cycle, leading to complete mineralization. Structural analysis of metabolites in conjunction with enzyme activity studies confirmed the involvement of azoreductase, cytochrome P450 monooxygenase and other antioxidant enzymes. Decreases in total organic carbon and in biological and chemical oxygen demand suggest formation of low molecular weight metabolites that could be completely mineralized. These results suggest the potential use of B. lentus BI377 towards online treatment of textile dye effluents by using an appropriate bioreactor over a wide range of pH. This study opens-up a dependable and proficient way to use industrially viable non-pathogenic strains for biotransformation of carcinogenic dyes to ecofriendly compounds.  相似文献   

17.
Low molecular weight proteins co-purified with IgG constitute 0.22% of the total protein purified from human plasma by ion-exchange chromatography on DEAE-cellulose. We have found that these low molecular weight proteins were obtained free of immunoglobulin by ultrafiltration in 5 M guanidinium chloride. Electrophoresis and isoelectric focusing in polyacrylamide gels demonstrated that this fraction of low molecular weight proteins is remarkably heterogeneous. Chromatography of an Mr 6000 to 12 000 fraction on hydroxyapatite resolved fourteen discrete protein peaks. Three of the peaks contained proteins which appeared to be homogeneous on acid-urea polyacrylamide gels. Two of these proteins were similar in composition to B2 globulin and may represent degradation products of some larger protein. The third protein was found to have an amino-terminal sequence identical to C3a. This population of low molecular weight plasma proteins has previously been shown to contain the cystic fibrosis mucociliary inhibitor and is here shown to contain two proteins similar to B2 globulin, C3a and many proteins remaining to be characterized. The presence of these low molecular weight proteins in measurable concentrations may be insufficiently appreciated in studies using 'purified' immunoglobulins as biological or chemical probes.  相似文献   

18.
A bacterial strain designated as BPM3 isolated from mud of a natural hot water spring of Nambar Wild Life Sanctuary, Assam, India, strongly inhibited growth of phytopathogenic fungi (Fusarium oxysporum f. sp. ciceri, F. semitectum, Magnaporthe grisea and Rhizoctonia oryzae) and gram-positive bacterium (Staphylococcus aureus). The maximum growth and antagonistic activity was recorded at 30 °C, pH 8.5 when starch and peptone were amended as carbon and nitrogen sources, respectively. In greenhouse experiment, this bacterium (BPM3) suppressed blast disease of rice by 30-67% and protected the weight loss by 35-56.5%. The maximum disease protection (67%) and weight loss protection (56.5%) were recorded when the bacterium was applied before 2 days of the pathogen inoculation. Antifungal and antibacterial compounds were isolated from the bacterium which also inhibited the growth of these targeted pathogens. The compounds were purified and on spectroscopic analysis of a purified fraction having Rf 0.22 which showed strong antifungal and antibacterial activity indicated the presence of C-H, carbonyl group, dimethyl group, -CH2 and methyl group. The bacterium was characterized by morphological, biochemical and molecular approaches and confirmed that the strain BPM3 is Brevibacillus laterosporus.  相似文献   

19.
Abstract— l -Glutamate 1-carboxy-lyase (EC 4.1.1.15) (GAD) and 4-aminobutyrate-2-oxo-glutarate aminotransferase (EC 2.6.1.19) (GABA-T) have been purified from mouse brain (Wu et al. 1973; Schousboe et al., 1973) and their properties have been extensively studied (Wu & Roberts , 1974; Schousboe et al., 1974). The above enzymes were prepared from a water lysate of crude mitochondrial fraction, which accounted for only 25–30% of total GAD or GABA-T activities in brain. A procedure has been developed which liberates approx 85% of total GAD and GABA-T activities into supernatant. Two distinct, well-separated peaks with GAD activity and a single peak with GABA-T activity were observed when a concentrated extract from brain of adult or newborn mice was chromatographed on Sephadex G-200 or Bio-Gel A–1.5 m. The first peak appeared in the void volume and is. therefore. an entity of high molecular weight. The second peak gave elution characteristics which were identical to those of the enzyme that had been purified previously (mol wt = 85,000). These two GAD peaks were also clearly separated on polyacrylamide gel electrophoresis. The GAD activities in the two peaks showed similar pH profiles (optimum, 6.5). Km values (1–2 mM), immunodiffusion patterns and inhibitions by anti-GAD IgG prepared against GAD purified from synaptosome-containing crude mitochondrial fraction (60–80%). The physiological implications of high molecular weight and low molecular weight forms of GAD are discussed.  相似文献   

20.
Streptococcus mutans (MTCC 497) was grown anaerobically in acidic Brain heart infusion (BHI) medium with 15 % sucrose to produce cell-bound and extracellular water-insoluble polysaccharide mutan. Fourier transformed infrared (FTIR) and 13C NMR studies revealed a mixed linkage of α-1−3 and α-1–6 mutan with a production yield of 1.8 g/L. Mutan has a branched structure with a molecular weight (Mw) of 5654 Da. Water-insoluble mutan was carboxymethylated at 0.93 degrees of substitution. FTIR spectra with characteristic peaks at 1603 cm−1 and 1418 cm−1 due to symmetric and asymmetric vibrations of the COO- group confirmed carboxymethylation. Thermal gravimetric analysis showed that native mutan and carboxymethyl mutan exhibited higher thermal stability. Carboxymethylation enhanced solubility and antioxidative radical-scavenging activity. The in-vitro antioxidative radical scavenging analysis revealed 52 % and 47 % inhibition of DPPH and ABTS radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号