首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of flavonoids in mechanisms of acclimation to high solar radiation was analysed in Ligustrum vulgare and Phillyrea latifolia, two Mediterranean shrubs that have the same flavonoid composition but differ strikingly in their leaf morpho-anatomical traits. In plants exposed to 12 or 100% solar radiation, measurements were made for surface morphology and leaf anatomy; optical properties, photosynthetic pigments, and photosystem II efficiency; antioxidant enzymes, lipid peroxidation and phenylalanine ammonia lyase; synthesis of hydroxycinnamates and flavonoids; and the tissue-specific distribution of flavonoid aglycones and ortho-dihydroxylated B-ring flavonoid glycosides. A denser indumentum of glandular trichomes, coupled with both a thicker cuticle and a larger amount of cuticular flavonoids, allowed P. latifolia to prevent highly damaging solar wavelengths from reaching sensitive targets to a greater degree than L. vulgare. Antioxidant enzymes in P. latifolia were also more effective in countering light-induced oxidative load than those in L. vulgare. Consistently, light-induced accumulation of flavonoids in L. vulgare, particularly ortho-dihydroxylated flavonoids in the leaf mesophyll, greatly exceeded that in P. latifolia. We conclude that the accumulation of flavonoid glycosides associated with high solar radiation-induced oxidative stress and, hence, biosynthesis of flavonoids appear to be unrelated to 'tolerance' to high solar radiation in the species examined.  相似文献   

2.
Different tomato cultivars (Solanum lycopersicum L.) with differences in tolerance to drought were subjected to moderate water stress to test the effects on flavonoids and caffeoyl derivatives and related enzymes. Our results indicate that water stress resulted in decreased shikimate pathway (DAHP synthase, shikimate dehydrogenase, phenylalanine ammonium lyase, cinnamate 4-hydroxylase, 4-coumarate CoA ligase) and phenolic compounds (caffeoylquinic acid derivatives, quercetin and kaempferol) in the cultivars more sensitive to water stress. However, cv. Zarina is more tolerant, and registered a rise in querc-3-rut-pent, kaempferol-3-api-rut, and kaempferol-3-rut under the treatment of water stress. Moreover, this cultivar show increased activities of flavonoid and phenylpropanoid synthesis and decreased in degradation-related enzymes. These results show that moderate water stress can induce shikimate pathway in tolerant cultivar.  相似文献   

3.
4.
以3个紫花苜蓿(Medicago sativa)品种为试验材料,利用不同浓度(0、5%、10%、15%、20%、25%)的PEG 6000溶液模拟干旱胁迫,探究干旱胁迫对不同品种紫花苜蓿黄酮类化合物合成上游3个关键酶活性以及黄酮类化合物含量的影响。结果表明:(1)随着PEG 6000胁迫浓度的增加,3种紫花苜蓿叶片中PAL(苯丙氨酸解氨酶)、C4H(肉桂酸 4 羟基化酶)和4CL(4 香豆酸辅酶A连接酶)活性均呈先升高后降低的趋势,但不同酶类之间响应存在差异,即PAL活性在10% PEG 6000胁迫浓度下最高,C4H和4CL活性则在15% PEG 6000胁迫浓度下最高,且均显著高于相应对照。(2)3种紫花苜蓿植株地上部总黄酮含量和8种黄酮类化合物含量均随着PEG 6000胁迫浓度的增加呈先上升后下降的趋势,且均在10%~15% PEG 6000胁迫浓度时达到最高值,并显著高于相应对照。(3)各品种紫花苜蓿叶片黄酮类化合物含量与其关键酶活性呈不同程度的相关性,即紫花苜蓿黄酮类化合物合成途径上游3个关键酶活性与其地上部黄酮类化合物含量存在密切的关系。研究认为,不同程度的干旱胁迫可以通过促进黄酮类化合物合成途径上游关键酶活性的变化来调节紫花苜蓿植株中黄酮类化合物的合成,且适度干旱胁迫能显著促进相关酶活性增强和黄酮类化合物含量增加。  相似文献   

5.
Flavonoids are valuable natural products derived from the phenylpropanoid pathway. The objective of this study was to create a host for the biosynthesis of naringenin, the central precursor of many flavonoids. This was accomplished by introducing the phenylpropanoid pathway with the genes for phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides, 4-coumarate:coenzyme A (CoA) ligase (4CL) from Arabidopsis thaliana, and chalcone synthase (CHS) from Hypericum androsaemum into two Saccharomyces cerevisiae strains, namely, AH22 and a pad1 knockout mutant. Each gene was cloned and inserted into an expression vector under the control of a separate individual GAL10 promoter. Besides its PAL activity, the recombinant PAL enzyme showed tyrosine ammonia lyase activity, which enabled the biosynthesis of naringenin without introducing cinnamate 4-hydroxylase (C4H). 4CL catalyzed the conversion of both trans-cinnamic acid and p-coumaric acid to their corresponding CoA products, which were further converted to pinocembrin chalcone and naringenin chalcone by CHS. These chalcones were cyclized to pinocembrin and naringenin. The yeast AH22 strain coexpressing PAL, 4CL, and CHS produced approximately 7 mg liter(-1) of naringenin and 0.8 mg liter(-1) of pinocembrin. Several by-products, such as 2',4',6'-trihydroxydihydrochalcone and phloretin, were also identified. Precursor feeding studies indicated that metabolic flux to the engineered flavonoid pathway was limited by the flux to the precursor l-tyrosine.  相似文献   

6.
7.
The addition of Aspergillus niger homogenate to Catharanthus roseus cell suspension cultures produced an increment of more than 60% in the alkaloid content of two different cell lines. The use of an inhibitor of phenylalanine ammonia lyase, i. e. cinnamic acid, along with the homogenate, resulted in an appearance of 90% of the alkaloids in the medium. Furthermore, even in the absence of fungal homogenate, there was a marked increase in the alkaloid content. The exposure of the cells to an osmotic stress produced a marked increment (320%) in the total alkaloid content. When both stress treatments were applied sequentially, an additive effect on alkaloid accumulation was observed. It was 300% higher than in cells cultured without treatment, the majority of the alkaloids found in the medium.Abbreviations BAP benzylaminopurine - CM chorismate mutase - DW dry weight - FW fresh weight - IAA indole-3-acetic acid - MS Murashige-Skoog - PAL phenylalanine ammonia lyase - PC Phillips-Collins  相似文献   

8.
Flavonoids possess diverse health‐promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone‐3‐hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm‐specific GluB‐1 promoter or embryo‐ and aleurone‐specific 18‐kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB‐II‐type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes.  相似文献   

9.
Scutellaria lateriflora is well known for its medical applications because of the presence of flavanoids and alkaloids. The present study aimed to explore the molecular aspects and regulations of flavanoids. Five partial cDNAs encoding genes that are involved in the flavonoid biosynthetic pathway: phenylalanine ammonia lyase (SlPAL), cinnamate 4-hydroxylase (SlC4H), 4-coumaroyl CoA ligase (Sl4CL), chalcone synthase (SlCHS), and chalcone isomerase (SlCHI) were isolated from S. lateriflora. Organ expression analysis showed that these genes were expressed in all organs analyzed with the highest levels correlating with the richest accumulation of wogonin in the roots. Baicalin and baicalein differentially accumulated in S. lateriflora plants, with the highest concentration of baicalin and baicalein detected in the leaves and stems, respectively. Exogenous methyl jasmonate (MeJA) significantly enhanced the expression of SlCHS and SlCHI, and accumulation of baicalin (22.54 mg/g), baicalein (1.24 mg/g), and wogonin (5.39 mg/g) in S. lateriflora hairy roots. In addition, maximum production of baicalin, baicalein, and wogonin in hairy roots treated with MeJA was approximately 7.44-, 2.38-, and 2.12-fold, respectively. Light condition increased the expression level of SlCHS, the first committed step in flavonoid biosynthesis in hairy roots of S. lateriflora after 3 and 4 weeks of development compared to the dark condition. Dark-grown hairy roots contained a higher content of baicalin and baicalein than light-grown hairy roots, while light-grown hairy roots accumulated more wogonin than dark-grown hairy roots. These results may helpful for the metabolic engineering of flavonoids biosynthesis in S. lateriflora.  相似文献   

10.
The pentacyclic biosynthetic precursor of jasmonic acid, 12-oxo-phytodienoic acid, was found to induce synthesis of the major flavonoid, apiin, in cell suspension cultures of Petroselinum crispum. The accumulation of apiin was preceded by an increase in the relative levels of poly (A)+ RNAs that code for the flavonoid biosynthetic enzymes phenylalanine ammonia lyase, 4-coumarate:CoA ligase and chalcone synthase, Poly (A)+ RNAs reached maximal levels at approximately 4-6 h after the addition of elicitor while flavonoids continued to accumulate in the cultures for at least 6 days. 12-Oxo-phytodienoic acid is the first pentacyclic precursor in the jasmonic acid biosynthetic chain which functions as a signal transducer for phytoalexin induction.  相似文献   

11.
Abstract

UV-B radiation (280–320 nm) as an environmental stress has damaging effect on plants and its overexposure can potentially interfere with growth and development. The effect of thiourea (TU) on UV-B stress tolerance of 10-day-old Brassica juncea seedlings subjected to supplementary UV-B for 5 days was investigated. An increase in the UV-B absorbing compounds anthocyanin, flavonoids and phenolic compounds was observed in UV-B + TU treated seedlings as compared to that of control. The enhanced synthesis of UV-B screening compounds resulted in lesser damage to chlorophyll and also gain in fresh weight and dry weight in UV-B + TU as compared to UV-B alone treatment. The enzymatic activities of guaiacol peroxidase (GPX) and superoxide dismutase (SOD) also increased in UV-B + TU. The expression profiling of phenylalanine ammonia lyase (pal) and chalcone synthase (chs) indicated an upregulation under UV-B + TU treatment, compared to that of control, suggesting that TU treatment ensured an early and efficient induction of flavonoid biosynthetic pathway. The results indicate that TU helps in ameliorating the damaging effects of UV-B stress by efficiently maintaining the antioxidant status and attenuating the penetration of the UV-B.  相似文献   

12.
13.

Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in stress tolerance. To study the role of NO in drought tolerance and elucidate the underlying mechanisms, NO (0 and 100 μM) was applied to drought-treated soybean plants. Drought stress was imposed by PEG (5% (W/V) of PEG 6000. Nitric oxide improved growth of soybean plants under drought as evidenced by enhanced dry weight (30%). Nitric oxide caused a remarkable increase in activities of catalase and superoxide dismutase (SOD) and SOD expression (14.8-fold), which led to a significant decline in malondealdehyde content under drought conditions. Nitric oxide induced proline biosynthesis due to enhancing pyrroline-5- carboxylate synthetase (P5CS) expression (43.66-fold). The growth-promoting effect of NO application in soybean plants was concomitant with change in metabolic profile (phenolic acid and flavonoid compounds). Nitric oxide up-regulated of phenylalanine ammonia-lyase (PAL) expression in drought-treated plants and may influence on the phenylpropanoid production. Nitric oxide increased salicylic acid (SA) content in soybean plants under stress. So, NO and SA are jointly responsible for boosted tolerance to drought stress in soybean plants. The decrease in unsaturated fatty acid through NO application might reflect a reduction in oxidative damage. These results propose a multifaceted contribution of NO through regulation of physiological and metabolic processes in response to drought stress.

  相似文献   

14.
Green house study was aimed to investigate the effect of seed biopriming with drought tolerant isolates of Trichoderma harzianum, viz. Th 56, 69, 75, 82 and 89 on growth of wheat under drought stress and to explore the mechanism underlying plant water stress resilience in response to Trichoderma inoculation. Measurements of relative water content, osmotic potential, osmotic adjustment, leaf gas exchange, chlorophyll fluorescence and membrane stability index were performed. In addition, analysis of the phenolics, proline, lipid peroxidation and measurements of phenylalanine ammonia‐lyase activity were carried out. Seed biopriming enhanced drought tolerance of wheat as drought induced changes like stomatal conductance, net photosynthesis and chlorophyll fluorescence were delayed. Drought stress from 4 to 13 days of withholding water induced an increase in the concentration of stress induced metabolites in leaves, while Trichoderma colonisation caused decrease in proline, malondialdehyde (MDA) and hydrogen peroxide (H2O2), and an increase in total phenolics. A common factor that negatively affects plants under drought stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that seed biopriming reduced damages resulting from accumulation of ROS in stressed plants. The enhanced redox state of colonised plants could be explained by higher l ‐phenylalanine ammonia‐lyase (PAL) activity in leaves after 13 days of drought stress in Trichoderma treated plants. Similar activity was induced in untreated plants in response to drought stress but to a lower extent in comparison to treated plants. Our results support the hypothesis that seed biopriming in wheat with drought tolerant T. harzianum strains increased root vigour besides performing the process of osmoregulation. It ameliorates drought stress by inducing physiological protection in plants against oxidative damage, due to enhanced capacity to scavenge ROS and increased level of PAL, a mechanism that is expected to augment tolerance to abiotic stresses.  相似文献   

15.
16.
Lignin content and enzymes involved in lignification were measured in leaf discs of reed canarygrass (Phalaris arundinacea L.) inoculated with Helminthosporium avenae and floated on water or solutions of cycloheximide (25 μg/ml). Fungal germ tubes did not penetrate localized lignified swellings, which formed beneath penetration sites, in the outer epidermal wall of discs floated on water. Within 18 hours, inoculated discs on water had higher lignin content and higher activity of the enzymes phenylalanine ammonia lyase, tyrosine ammonia lyase, hydroxycinnamate-CoA ligase and peroxidase than noninoculated discs on water. When inoculated tissues were floated on cycloheximide solutions, increases in lignin content and enzyme activities associated with lignin biosynthesis were inhibited, and the tissue was susceptible to fungal penetration. Lignin biosynthesis at the site of attempted fungal penetration may play an important role in the resistant response of reed canarygrass to leaf-infecting fungi.  相似文献   

17.
The influences of salicylic acid (SA) on taxol production and isopentenyl pyrophosphate (IPP) biosynthesis pathways in suspension cultures of Taxus chinensis var. mairei were investigated by adding SA and mevastatin (MVS), a highly specific inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase in the mevalonate pathway for IPP biosynthesis, into the culture systems. The cell death and taxol production were induced upon the introduction of SA, and 20mg/l was proved to be the optimal SA concentration in terms of the less damage to Taxus cells and marked activation of phenylalanine ammonia lyase (PAL). In the coexistence of SA (20mg/l) and MVS (100 nmol/l), the taxol content (1.626 mg/g dry wt) was higher than that (0.252 mg/g dry wt) of the MVS-treated system but almost equal to that (1.581 mg/g dry wt) of the SA-treated system. It is thus inferred that the activated non-mevalonate pathway should be responsible for the formation of IPP in taxol biosynthesis in the presence of SA.  相似文献   

18.
Plants interact with their environment by producing a diverse array of secondary metabolites. A majority of these compounds are phenylpropanoids and flavonoids which are valued for their medicinal and agricultural properties. The phenylpropanoid biosynthesis pathway proceeds with the basic C6-C3 carbon skeleton of phenylalanine, and involves a wide range of enzymes viz., phenylalanine ammonia lyase, coumarate hydroxylase, coumarate ligase, chalcone synthase, chalcone reductase and chalcone isomerase. Recently, bacteria have also been shown to contain homodimeric polyketide synthases belonging to the plant chalcone synthase superfamily linking the capabilities of plants and bacteria in the biosynthesis of flavonoids. We report here the presence of genes encoding the core enzymes of the phenylpropanoid pathway in an industrially useful fungus, Aspergillus oryzae. Although the assignment of enzyme function must be confirmed by further biochemical evidences, this work has allowed us to anticipate the phenylpropanoid metabolism profile in a filamentous fungus for the first time and paves way for research on identifying novel fungal flavonoid-like metabolites.  相似文献   

19.
20.
In developing Oenothera odorata seedlings, phytochrome-mediated accumulation of various flavonoids (mainly glycosides of cyanidin and quercetin) is detectable, subsequent to a transient induction of the key enzymes of the general phenylpropanoid metabolism, L-phenylalanine ammonia lyase (PAL) and of flavonoid biosynthesis, chalcone synthase (CHS). Organ- and tissue-specific distribution of these enzymes and of the flavonoid end products was investigated in seedlings, irradiated with continuous far-red light. Anthocyanins and quercetin glycosides are mainly localized in both the upper and lower epidermis of the cotyledons and to a lesser extent also in the epidermal cell layer of the hypocotyl. An obvious organ-specific distribution was observed for the anthocyanins: cyanidin-3,5-O-diglucoside accumulates in the epidermal cells of the cotyledons, whereas cyanidin-3-O-glucoside is restricted to the epidermis of the hypocotyl. By contrast the pattern of quercetin glycosides is the same in the cotyledons and in the hypocotyl. The methylated flavonol aglycone 3-0-methylquercetin was found to be localized in the seed coat. According to this organ- and tissue-specific pattern of flavonoids, immunochemical and immunohistochemical detection of PAL and CHS revealed a predominant localization of theenzymes in the epidermal layers of the cotyledons and the hypocotyl but also in the cells surrounding the vascular bundles. The role of compartmentation in regulation of flavonoid biosynthesis and putative functions of flavonoid compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号