首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethyl tert-butyl ether (ETBE) enrichment was obtained by adding contaminated groundwater to a mineral medium containing ETBE as the sole carbon and energy source. ETBE was completely degraded to biomass and CO2 with a transient production of tert-butanol (TBA) and a final biomass yield of 0.37?±?0.08 mg biomass (dry weight).mg?1 ETBE. Two bacterial strains, IFP 2042 and IFP 2049, were isolated from the enrichment, and their 16S rRNA genes (rrs) were similar to Rhodococcus sp. (99 % similarity to Rhodococcus erythropolis) and Bradyrhizobium sp. (99 % similarity to Bradyrhizobium japonicum), respectively. Rhodococcus sp. IFP 2042 degraded ETBE to TBA, and Bradyrhizobium sp. IFP 2049 degraded TBA to biomass and CO2. A mixed culture of IFP 2042 and IFP 2049 degraded ETBE to CO2 with a biomass yield similar to the original ETBE enrichment (0.31?±?0.02 mg?biomass.mg?1 ETBE). Among the genes previously described to be involved in ETBE, MTBE, and TBA degradation, only alkB was detected in Rhodococcus sp. IFP 2042 by PCR, and none were detected in Bradyrhizobium sp. IFP 2049.  相似文献   

2.
The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.  相似文献   

3.
Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiated from pristine and contaminated (high in uranium, nitrate; low pH) subsurface sediments at pH 7 and pH 4 to 5. Enumeration of Fe(III)-reducing bacteria yielded cell counts of up to 240 cells ml−1 for the contaminated and background sediments at both pHs with a range of different carbon sources (glycerol, acetate, lactate, and glucose). In enrichments where nitrate contamination was removed from the sediment by washing, MPN counts of Fe(III)-reducing bacteria increased substantially. Sediments of lower pH typically yielded lower counts of Fe(III)-reducing bacteria in lactate- and acetate-amended enrichments, but higher counts were observed when glucose was used as an electron donor in acidic enrichments. Phylogenetic analysis of 16S rRNA gene sequences extracted from the highest positive MPN dilutions revealed that the predominant members of Fe(III)-reducing consortia from background sediments were closely related to members of the Geobacteraceae family, whereas a recently characterized Fe(III) reducer (Anaeromyxobacter sp.) and organisms not previously shown to reduce Fe(III) (Paenibacillus and Brevibacillus spp.) predominated in the Fe(III)-reducing consortia of contaminated sediments. Analysis of enrichment cultures by terminal restriction fragment length polymorphism (T-RFLP) strongly supported the cloning and sequencing results. Dominant members of the Fe(III)-reducing consortia were observed to be stable over several enrichment culture transfers by T-RFLP in conjunction with measurements of Fe(III) reduction activity and carbon substrate utilization. Enrichment cultures from contaminated sites were also shown to rapidly reduce millimolar amounts of U(VI) in comparison to killed controls. With DNA extracted directly from subsurface sediments, quantitative analysis of 16S rRNA gene sequences with MPN-PCR indicated that Geobacteraceae sequences were more abundant in pristine compared to contaminated environments,whereas Anaeromyxobacter sequences were more abundant in contaminated sediments. Thus, results from a combination of cultivation-based and cultivation-independent approaches indicate that the abundance/community composition of Fe(III)-reducing consortia in subsurface sediments is dependent upon geochemical parameters (pH, nitrate concentration) and that microorganisms capable of producing spores (gram positive) or spore-like bodies (Anaeromyxobacter) were representative of acidic subsurface environments.  相似文献   

4.
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are competing microbial nitrate-reduction processes. The occurrence of DNRA has been shown to be effected qualitatively by various parameters in the environment. A more quantitative understanding can be obtained using enrichment cultures in a laboratory reactor, yet no successful DNRA enrichment culture has been described. We showed that a stable DNRA-dominated enrichment culture can be obtained in a chemostat system. The enrichment was based on the hypothesis that nitrate limitation is the dominant factor in selecting for DNRA. First, a conventional denitrifying culture was enriched from activated sludge, with acetate and nitrate as substrates. Next, the acetate concentration in the medium was increased to obtain nitrate-limiting conditions. As a result, conversions shifted from denitrification to DNRA. In this selection of a DNRA culture, two important factors were the nitrate limitation and a relatively low dilution rate (0.026 h−1). The culture was a highly enriched population of Deltaproteobacteria most closely related to Geobacter lovleyi, based on 16S rRNA gene sequencing (97% similarity). We established a stable and reproducible cultivation method for the enrichment of DNRA bacteria in a continuously operated reactor system. This enrichment method allows to further investigate the DNRA process and address the factors for competition between DNRA and denitrification, or other N-conversion pathways.  相似文献   

5.
Iron(II) [Fe(II)] oxidation coupled to denitrification is recognized as an environmentally important process in many ecosystems. However, the Fe(II)-oxidizing bacteria (FeOB) dominating autotrophic nitrate-reducing Fe(II)-oxidizing enrichment cultures, affiliated with the family Gallionellaceae, remain poorly taxonomically defined due to lack of representative isolates. We describe the taxonomic classification of three novel FeOB based on metagenome-assembled genomes (MAGs) acquired from the autotrophic nitrate-reducing enrichment cultures KS, BP and AG. Phylogenetic analysis of nearly full-length 16S rRNA gene sequences demonstrated that these three FeOB were most closely affiliated to the genera Ferrigenium, Sideroxydans and Gallionella, with up to 96.5%, 95.4% and 96.2% 16S rRNA gene sequence identities to representative isolates of these genera, respectively. In addition, average amino acid identities (AAI) of the genomes compared to the most closely related genera revealed highest AAI with Ferrigenium kumadai An22 (76.35–76.74%), suggesting that the three FeOB are members of this genus. Phylogenetic analysis of conserved functional genes further supported that these FeOB represent three novel species of the genus Ferrigenium. Moreover, the three novel FeOB likely have characteristic features, performing partial denitrification coupled to Fe(II) oxidation and carbon fixation. Scanning electron microscopy of the enrichment cultures showed slightly curved rod-shaped cells, ranging from 0.2-0.7 μm in width and 0.5–2.3 μm in length. Based on the phylogenetic, genomic and physiological characteristics, we propose that these FeOB represent three novel species, ‘Candidatus Ferrigenium straubiae’ sp. nov., ‘Candidatus Ferrigenium bremense’ sp. nov. and ‘Candidatus Ferrigenium altingense’ sp. nov. that might have unique metabolic features among the genus Ferrigenium.  相似文献   

6.
We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na–Ca–Cl, suboxic, fracture water represents a mixture of geologically ancient brine, ~25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were ~103 cells mL?1. Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomic units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Gram-positive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.  相似文献   

7.
Recurring seasonal patterns of microbial distribution and abundance in three third-order temperate streams within the southeast Pennsylvania Piedmont were observed over 4 years. Populations associated with streambed sediments and rocks (epilithon) were identified using terminal restriction length polymorphism (tRFLP) and sequencing of 16S rRNA genes selectively amplified with primers for the bacterial domain. Analyses of the relative magnitudes of tRFLP peak areas by using nonmetric multidimensional scaling resolved clear seasonal trends in epilithic and sediment populations. Oscillations between two dominant groups of epilithic genotypes, explaining 86% of the seasonal variation in the data set, were correlated with temperature and dissolved organic carbon. Sequences affiliated with epilithic phototrophs (cyanobacteria and diatom chloroplasts), a Rhodoferax sp., and a Bacillus species clustered in the summer, whereas sequences most closely related to “Betaproteobacteria” (putative Burkholderia sp.), and a putative cyanobacterium clustered in the fall/spring. The sediment genotypes also clustered into two groups, and these explained 85% of seasonal variation but correlated only with temperature. A summer tRFLP pattern was characterized by prevalence of “Betaproteobacteria,” “Gammaproteobacteria,” and a Bacillus sp., whereas the winter/spring pattern was characterized by phylotypes most closely related to “Firmicutes,” “Gammaproteobacteria,” and “Nitrospirae.” A close association between these headwater streams and their watersheds was suggested by the recovery of sequences related to microbial populations provisionally attributed to not only freshwaters but also terrestrial habitats.  相似文献   

8.
An enrichment culture method was applied to the isolation of a bacterial strain responsible for biodegradation of methidathion residues, from a methidathion-treated orchard. The strain (SPL-2) was identified as Serratia sp. according to its physiological characteristics and 16S rRNA gene phylogenetic analysis. Serratia sp. was able to grow in a poor medium consisting of mineral salts and using methidathion as the sole carbon source at a concentrations of 50–150 mg/L. The effects of multifactors on degradation of methidathion in pure cultures by Serratia sp. were investigated using an orthogonal experimental design L9 (34). On the basis of range analysis and ANOVA results, the most significant factors were temperature and inoculum size. The optimal conditions for methidathion biodegradation in pure cultures were a temperature in 30 °C, an inoculum size of 10 %, pH?=?7 and an aeration rate of 200 rpm. Two different concentrations of strain SPL-2 fermenting liquids (OD600?=?0.2 and OD600?=?0.4) were prepared and applied to remove methidathion residues from agricultural products, and this process can be described by a first order rate model. In contrast to controls, the DT50 of methidathion was shortened by 35.7 %, 8.2 % and by 62.3 %, 57.5 % on OD600?=?0.2 and OD600?=?0.4 treated haricot beans and peaches, respectively. These results suggest that the isolated bacterial strain may have potential for use in bioremediation of methidathion-contaminated crops.  相似文献   

9.

Aims

Milletia pinnata is a leguminous tropical tree that produces seed oil suitable for biodiesel and is targeted to be planted on marginal land associated with nitrogen poor soil. This study aimed to identify effective rhizobia species for M. pinnata.

Methods

Soil samples were collected from M. pinnata grown in Kununurra, Australia. Rhizobia were trapped, characterised and sequenced for 16S rRNA, atpD, dnaK and recA genes.

Results

Forty isolates tolerated pH 7 – 9, temperatures 29 – 37 °C, salinity below 1 % NaCl, and had optimal growth on mannitol, arabinose or glutamate as a single carbon source, a few grew on sucrose and none grew on lactose. Inoculation of isolates increased shoot dry weight of M. pinnata’s seedlings in nitrogen minus media. Slow-growing isolates were closely related to Bradyrhizobium yuanmingense, Bradyrhizobium sp. DOA10, Bradyrhizobium sp. ORS305 and B. liaoningense LMG 18230T. The fast-growing isolates related to Rhizobium sp. 8211, R. miluonense CCBAU 41251T, R miluonense CC-B-L1, Rhizobium sp. CCBAU 51330 and Rhizobium sp. 43015

Conclusions

Millettia pinnata was effectively nodulated by slow-growing isolates related to Bradyrhizobium yuanmingense, Bradyrhizobium sp. DOA10 Bradyrhizobium sp. ORS305, B. liaoningense LMG 18230T and fast-growing isolates related Rhizobium sp. 8211, R. miluonense, Rhizobium sp. CCBAU 51330 and Rhizobium sp. 43015  相似文献   

10.
We examined the relative roles of acetogenic and sulfate-reducing bacteria in H2 consumption in a previously characterized subsurface sandstone ecosystem. Enrichment cultures originally inoculated with ground sandstone material obtained from a Cretaceous formation in central New Mexico were grown with hydrogen in a mineral medium supplemented with 0.02% yeast extract. Sulfate reduction and acetogenesis occurred in these cultures, and the two most abundant organisms carrying out the reactions were isolated. Based on 16S rRNA analysis data and on substrate utilization patterns, these organisms were named Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. The steady-state H2 concentrations measured in sandstone-sediment slurries (threshold concentration, 5 nM), in pure cultures of sulfate reducers (threshold concentration, 2 nM), and in pure cultures of acetogens (threshold concentrations 195 to 414 nM) suggest that sulfate reduction is the dominant terminal electron-accepting process in the ecosystem examined. In an experiment in which direct competition for H2 between D. hypogeium and A. psammolithicum was examined, sulfate reduction was the dominant process.  相似文献   

11.
Arsenic (As) is a toxic metalloid that has gained special interest in the past years as a global environmental problem. Groundwater in Córdoba province (Argentina) presents high As concentrations which can be absorbed by plants or be used for artificial irrigation. The aim of this research was to elucidate the differential responses of symbiotic interactions established with three bacterial strains and soybean plants to realistic doses of arsenic. The reference strain Bradyrhizobium diazoefficiens USDA110 and the native isolate Bradyrhizobium sp. Per 3.64 were able to grow up to 13 mM As(V) whereas the native strain Bradyrhizobium sp. Per 3.61 grew up to 9.5 mM As(V). Metalloid addition did not modify the soybean plant growth at 6 μM As(V). Nevertheless, it was enough to induce oxidative stress as observed by an increase on lipid peroxidation. The soybean-Bradyrhizobium sp. assay at 6 μM As(V) showed no changes in growth variables (shoot and root dry weight) in plants inoculated with the reference microsymbiont or Bradyrhizobium sp. Per 3.61. Regarding As uptake by plants, metalloid accumulation followed the same distribution pattern among strains. Remarkably, at 6 μM As(V), soybean inoculation with Bradyrhizobium sp. Per 3.61 revealed a significantly lower translocation factor (TF) in comparison to other inoculated strains promoting As phytostabilization. At the highest As(V) concentration tested, only Bradyrhizobium diazoefficiens USDA110 was able to nodulate the legume, however, a significant decrease in the number and dry weight of nodules and nitrogen content was observed. In conclusion, the inoculation of soybean plants with the reference strain Bradyrhizobium diazoefficiens USDA110 exposed to high As(V) concentration represents an effective and promising symbiotic interaction that allows the development of the legume due to the minimal effects on plant growth. However, in low As(V) concentration environments, the native isolate Bradyrhizobium sp. Per 3.61, is shown to be the best inoculant among the tested strains, owing to the limitation of metalloid translocation and accumulation to edible parts of the legume, avoiding fruit contamination and human poisoning.  相似文献   

12.
Groundwaters at nuclear sites can be characterized by low pH and high nitrate concentrations (10–100 mM). These conditions are challenging for bioremediation, often inhibiting microbial Fe(III)-reduction which can limit radionuclide migration. Here, sediment microcosms representative of the UK Sellafield site were used to study the influence of variable pH and nitrate concentrations on microbially-mediated TEAP (terminal electron accepting processes) progression. The rate of reduction through the terminal electron accepting cascade NO? 3 > NO? 2 > Mn(IV)/Fe(III) > SO2? 4 at low pH (~5.5) was slower than that in bicarbonate buffered systems (pH ~ 7.0), but in the low pH systems, denitrification and associated pH buffering resulted in conditioning of the sediments for subsequent Fe(III) and sulfate-reduction. Under very high nitrate conditions (100 mM), bicarbonate buffering (pH ~ 7.0) was necessary for TEAP progression beyond denitrification and the reduction of 100 mM nitrate created alkaline conditions (pH 9.5). 16S rRNA gene analysis showed that close relatives of known nitrate reducers Bacillus niacini and Ochrobactrum grignonense dominated the microbial communities in this reduced sediment. In Fe(III)-reducing enrichment cultures from the 100 mM nitrate system, close relatives of the Fe(III)-reducing species Alkaliphilus crotonatoxidans and Serratia liquifaciens were observed. These results highlight that under certain conditions and contrary to expectations, denitrification may support bioreduction via pH conditioning for optimal metal reduction and radionuclide immobilization.  相似文献   

13.
Effects of aquatic vegetation type on denitrification   总被引:1,自引:0,他引:1  
In a microcosm 15N enrichment experiment we tested the effect of floating vegetation (Lemna sp.) and submerged vegetation (Elodea nuttallii) on denitrification rates, and compared it to systems without macrophytes. Oxygen concentration, and thus photosynthesis, plays an important role in regulating denitrification rates and therefore the experiments were performed under dark as well as under light conditions. Denitrification rates differed widely between treatments, ranging from 2.8 to 20.9 ??mol N m?2 h?1, and were strongly affected by the type of macrophytes present. These differences may be explained by the effects of macrophytes on oxygen conditions. Highest denitrification rates were observed under a closed mat of floating macrophytes where oxygen concentrations were low. In the light, denitrification was inhibited by oxygen from photosynthesis by submerged macrophytes, and by benthic algae in the systems without macrophytes. However, in microcosms with floating vegetation there was no effect of light, as the closed mat of floating plants caused permanently dark conditions in the water column. Nitrate removal was dominated by plant uptake rather than denitrification, and did not differ between systems with submerged or floating plants.  相似文献   

14.
Mining often leads to nitrate and metal contamination of groundwater and water bodies. Denitrification of acidic water was investigated in two up-flow fluidized-bed reactors (FBR) and using batch assays. Bacterial communities were enriched on ethanol plus nitrate in the FBRs. Initially, the effects of temperature, low-pH and ethanol/nitrate on denitrification were revealed. Batch assays showed that pH 4.8 was inhibitory to denitrification, whereas FBR characteristics permitted denitrification even at feed pH of 2.5 and at 7–8 °C. Nitrate and ethanol were removed and the feed pH was neutralized, provided that ethanol was supplied in excess to nitrate. Subsequently, Fe(II) and Cu impact on denitrification was investigated within batch tests at pH 7. Iron supplementation up to 100 mg/L resulted in iron oxidation and soluble concentrations ranging from 0.4 to 1.6 mg/L that stimulated denitrification. On the contrary, 0.7 mg/L of soluble Cu significantly slowed denitrification down resulting in about 45 % of inhibition in the first 8 h. Polymerase chain reaction—denaturant gradient gel electrophoresis demonstrated the co-existence of different denitrifying microbial consortia in FBRs. Dechloromonas denitrificans and Hydrogenophaga caeni were present in both FBRs and mainly responsible for nitrate reduction.  相似文献   

15.
The kinetics of denitrification and the causes of nitrite and nitrous oxide accumulation were examined in resting cell suspensions of three denitrifiers. An Alcaligenes species and a Pseudomonas fluorescens isolate characteristically accumulated nitrite when reducing nitrate; a Flavobacterium isolate did not. Nitrate did not inhibit nitrite reduction in cultures grown with tungstate to prevent formation of an active nitrate reductase; rather, accumulation of nitrite seemed to depend on the relative rates of nitrate and nitrite reduction. Each isolate rapidly reduced nitrous oxide even when nitrate or nitrite had been included in the incubation mixture. Nitrate also did not inhibit nitrous oxide reduction in Alcaligenes odorans, an organism incapable of nitrate reduction. Thus, added nitrate or nitrite does not always cause nitrous oxide accumulation, as has often been reported for denitrifying soils. All strains produced small amounts of nitric oxide during denitrification in a pattern suggesting that nitric oxide was also under kinetic control similar to that of nitrite and nitrous oxide. Apparent Km values for nitrate and nitrite reduction were 15 μM or less for each isolate. The Km value for nitrous oxide reduction by Flavobacterium sp. was 0.5 μM. Numerical solutions to a mathematical model of denitrification based on Michaelis-Menten kinetics showed that differences in reduction rates of the nitrogenous compounds were sufficient to account for the observed patterns of nitrite, nitric oxide, and nitrous oxide accumulation. Addition of oxygen inhibited gas production from 13NO3 by Alcaligenes sp. and P. fluorescens, but it did not reduce gas production by Flavobacterium sp. However, all three isolates produced higher ratios of nitrous oxide to dinitrogen as the oxygen tension increased. Inclusion of oxygen in the model as a nonspecific inhibitor of each step in denitrification resulted in decreased gas production but increased ratios of nitrous oxide to dinitrogen, as observed experimentally. The simplicity of this kinetic model of denitrification and its ability to unify disparate observations should make the model a useful guide in research on the physiology of denitrifier response to environmental effectors.  相似文献   

16.
Drainage ditches are ubiquitous yet understudied features of the agricultural landscape. Nitrogen pollution disrupts the nutrient balance of drainage ditch ecosystems, as well as the waterbodies in which they drain. Denitrification can help ameliorate the impact of N-fertilization by converting reactive nitrogen into dinitrogen gas. However, factors affecting denitrification in drainage ditches are still poorly understood. In this study, we tested how within-ditch and regional environmental conditions affect denitrifier activity, abundance, and community structure, to understand controls on denitrification at multiple scales. To this end, we quantified in situ denitrification rates and denitrifier abundance in 13 drainage ditches characterized by different types of sediment, vegetation and land-use. We determined how denitrification rates relate to denitrifier abundance and community structure, using the presence of nirS, nirK and nosZ genes as a proxy. Denitrification rates varied widely between the ditches, ranging from 0.006 to 24 mmol N m?2 h?1. Ditches covered by duckweed, which contained high nitrate concentrations and had fine, sandy sediments, were denitrification hotspots. We found highest rates in ditches next to arable land, followed by those in grasslands; lowest rates were observed in peatlands and nature reserves. Denitrification correlated to nitrate concentrations, but not to nirK, nirS and nosZ abundance, whereas denitrifier-gene abundance correlated to organic matter content of the sediment, but not to nitrate concentrations. Our results show a mismatch in denitrification regulators at its different organizational scales. Denitrifier abundance is mostly regulated at within-ditch scales, whereas N-loads, regulated by landscape factors, are most important determinants of instantaneous denitrification rates.  相似文献   

17.
To evaluate the denitrification abilities of many Bradyrhizobium field isolates, we developed a new 15N-labeled N2 detection methodology, which is free from interference from atmospheric N2 contamination. 30N2 (15N15N) and 29N2 (15N14N) were detected as an apparent peak by a gas chromatograph equipped with a thermal conductivity detector with N2 gas having natural abundance of 15N (0.366 atom%) as a carrier gas. The detection limit was 0.04% 30N2, and the linearity extended at least to 40% 30N2. When Bradyrhizobium japonicum USDA110 was grown in cultures anaerobically with 15NO3, denitrification product (30N2) was detected stoichiometrically. A total of 65 isolates of soybean bradyrhizobia from two field sites in Japan were assayed by this method. The denitrification abilities were partly correlated with filed sites, Bradyrhizobium species, and the hup genotype.  相似文献   

18.
Use of secondary-treated wastewater for the production of Muriellopsis sp.   总被引:1,自引:0,他引:1  
In this paper, the use of secondary-treated wastewater as the culture medium for the production of Muriellopsis sp. microalgal biomass is analyzed. Using this wastewater, a maximum biomass productivity of 0.5 g?l?1?day?1 was measured, it being only 38 % lower than that achieved using the standard culture medium. Due to the low nitrogen content of secondary-treated wastewater, cultures produced in a medium containing a high percentage of it become nitrate-limited, thus the quantum yield reduces by up to 0.38 g?E?1—this compares to 0.67 g?E?1 when using a standard culture medium. On the other hand, nitrate limitation enhances the accumulation of lipids and carbohydrates, with values measured at 33 and 66 % dry weight, respectively. It was also demonstrated that secondary-treated wastewater does not have any toxic effect on the growth of Muriellopsis sp. in spite of nitrogen being in the form of ammonium rather than in nitrate. Moreover, the secondary-treated wastewater was depurated when used to produce Muriellopsis sp., with the outlet biological oxygen demand and chemical oxygen demand being lower than at the inlet; the nitrate and phosphate concentrations were zero. Therefore, Muriellopsis sp. production using secondary-treated wastewater allows a reduction in the process cost by decreasing freshwater and fertilizer use, as well as by depurating the water, thus greatly enhancing process sustainability.  相似文献   

19.
Hyphomicrobium spp. are commonly identified as major players in denitrification systems supplied with methanol as a carbon source. However, denitrifying Hyphomicrobium species are poorly characterized, and very few studies have provided information on the genetic and physiological aspects of denitrification in pure cultures of these bacteria. This is a comparative study of three denitrifying Hyphomicrobium species, H. denitrificans ATCC 51888, H. zavarzinii ZV622, and a newly described species, H. nitrativorans NL23, which was isolated from a denitrification system treating seawater. Whole-genome sequence analyses revealed that although they share numerous orthologous genes, these three species differ greatly in their nitrate reductases, with gene clusters encoding a periplasmic nitrate reductase (Nap) in H. nitrativorans, a membrane-bound nitrate reductase (Nar) in H. denitrificans, and one Nap and two Nar enzymes in H. zavarzinii. Concurrently with these differences observed at the genetic level, important differences in the denitrification capacities of these Hyphomicrobium species were determined. H. nitrativorans grew and denitrified at higher nitrate and NaCl concentrations than did the two other species, without significant nitrite accumulation. Significant increases in the relative gene expression levels of the nitrate (napA) and nitrite (nirK) reductase genes were also noted for H. nitrativorans at higher nitrate and NaCl concentrations. Oxygen was also found to be a strong regulator of denitrification gene expression in both H. nitrativorans and H. zavarzinii, although individual genes responded differently in these two species. Taken together, the results presented in this study highlight the potential of H. nitrativorans as an efficient and adaptable bacterium that is able to perform complete denitrification under various conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号