首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Phagocytes generate reactive oxygen species, the regulation of which is important in eliminating ingested microbes while limiting tissue damage. Clustering of FcgammaRs results in the activation of Vav proteins, Rho/Rac guanine nucleotide exchange factors, and results in robust superoxide generation through the NADPH oxidase. In this study, studies in neutrophils isolated from mice deficient in Vav or Rac isoforms demonstrate a critical role for Vav3 in Rac2-dependent activation of the NADPH oxidase following FcgammaR clustering. However, studies in cytokine-primed cells revealed a strict requirement for Vav1 and Vav3 and Rac1 and Rac2 in the FcgammaR-mediated oxidative burst. In comparison, Vav was not essential for PMA or G protein-coupled receptor-mediated superoxide generation. The FcgammaR-mediated oxidative burst defect in Vav-deficient cells was linked to aberrant Rac activation as well as Rac- and actin-polymerization-independent, but PI3K-dependent, phosphorylation of the NADPH oxidase component p40(phox). In macrophages, Vav regulation of Rac GTPases was required specifically in FcgammaR-mediated activation of the oxidative burst, but not in phagocytosis. Thus, Vav proteins specifically couple FcgammaR signaling to NADPH oxidase function through a Rac-dependent as well as an unexpected Rac-independent signal that is proximal to NADPH oxidase activation and does not require actin polymerization.  相似文献   

2.
Integrin alpha(v)beta(3)-mediated adhesion of hematopoietic cells to vitronectin results in activation of the Rho GTPases. Mutation of beta(3) tyrosine residue 747, previously shown to disrupt cell adhesion, results in sustained activation of Cdc42 and diminished Rac and Rho activity. We investigated the role of the hematopoietically restricted guanine nucleotide exchange factor Vav1 in alpha(v)beta(3)-mediated adhesion. We find that Vav1, a guanine nucleotide exchange factor for Rac and Rho, associates with alpha(v)beta(3) upon cell adhesion to vitronectin and that this association requires beta(3) tyrosine phosphorylation. Expression of exogenous Vav1 demonstrates that Y160F, but not wild type or the Vav1Y174F mutant, inhibits Rac and Rho activation during alpha(v)beta(3)-mediated cell adhesion to vitronectin. Cells expressing Vav1Y160F exhibit a sustained Cdc42 activation similar to nonphosphorylatable beta(3) mutants. In addition, cytoskeletal reorganization and cell adhesion are severely suppressed in Vav1Y160F-transfected cells, and Vav1Y160F fails to associate with beta(3) integrins. Furthermore, Vav1 itself is selectively phosphorylated upon tyrosine 160 after alpha(v)beta(3)-mediated adhesion, and the association between Vav1 and beta(3) occurs in specific response to adhesion to substrate. These studies describe a phosphorylation-dependent association between beta(3) integrin and Vav1 which is essential for cell progression to a Rho-dominant phenotype during cell adhesion.  相似文献   

3.
Vav家族蛋白是Rho家族GTPase的鸟嘌呤核苷酸转移因子.Vav3作为Vav家族蛋白的成员之一,由8个结构域组成,其结构的复杂性赋予其功能的多样性.它可通过调节Rho家族不同成员的活性参与对MAPK、PI3K-Akt、NF-κB等信号转导通路的调控,在维持细胞形态、细胞黏附、血管生成、免疫功能的调节和细胞分化等过程中发挥重要作用.最近的研究发现,Vav3表达的失调与肿瘤发生密切相关,提示Vav3具有原癌基因的活性.本文对Vav3蛋白的结构、功能及其上下游的信号调节通路等进行了综述.  相似文献   

4.
Internalisation of the human pathogen Yersinia pseudotuberculosis via interaction of bacterial invasin with host beta1 integrins depends on the actin cytoskeleton and involves Src family kinases, focal adhesion kinase, p130Crk-associated substrate, proline-rich tyrosine kinase 2, Rac, Arp 2/3 complex and WASP family members. We show here that Rho GTPases are regulated by the microtubule system during bacterial uptake. Interfering with microtubule organisation using nocodazole or paclitaxel suppressed uptake by HeLa cells. The nocodazole effect on microtubule depolymerisation was partially inhibited through overexpression of Rac, Cdc42, RhoG or RhoA and completely prevented by expression of Vav2. This suggests that microtubules influence Rho GTPases during invasin-mediated phagocytosis and in the absence of functional microtubules Vav2 can mimic their effect on one, or more, of the Rho family GTPases. Lastly, overexpression of p50 dynamitin partially inhibited bacterial uptake and this effect was also blocked by co-expression of Vav2, thus further implicating this guanine nucleotide exchange factor in activating Rho GTPases for internalisation during loss of microtubule function.  相似文献   

5.
Vav family proteins act as guanine nucleotide exchange factors for Rho family proteins, which are known to orchestrate cytoskeletal changes and cell migration in response to extracellular stimuli. Using mice deficient for Vav1, Vav2 and/or Vav3, overlapping and isoform-specific functions of the three Vav proteins have been described in various hematopoietic cell types, but their roles in regulating cell morphology and migration have not been studied in detail. To investigate whether Vav isoforms have redundant or unique functions in regulating adhesion and migration, we investigated the properties of Vav1-deficient and Vav2-deficient macrophages. Both Vav1-deficient and Vav2-deficient cells have a smaller adhesive area; yet, only Vav1-deficient cells have a reduced migration speed, which coincides with a lower level of microtubules. Vav2-deficient macrophages display a high level of constitutive membrane ruffling, but neither Vav1 nor Vav2 is required for colony stimulating factor-1-induced membrane ruffling and cell spreading. Our results suggest that the migration speed of macrophages is regulated independently of spread area or membrane ruffling and that Vav1 is selectively required to maintain a normal migration speed.  相似文献   

6.
The signals linking neutrophil opsonic receptors, FcgammaRs and complement receptor 3 (Mac-1) to cellular cytotoxic responses are poorly understood. Furthermore, because a deficiency in activating FcgammaRs reduces both IgG-mediated neutrophil recruitment and tissue injury, the role of FcgammaRs specifically in mediating neutrophil cytotoxicity in vivo remains unclear. In this study, we demonstrate that neutrophil Vav 1 and 3, guanine exchange factors for Rac GTPases, are required for IgG/FcgammaR-mediated hemorrhage and edema in the reverse passive Arthus in the lung and skin. Rac GTPases are also required for development of the reverse passive Arthus reaction. A deficiency in Vav 1 and 3 does not affect neutrophil accumulation at the site of immune complex deposition, thus uncoupling neutrophil recruitment and tissue injury. Surprisingly, Vav and Rac proteins are dispensable for the development of the local Shwartzman reaction in vivo and phagocytosis of complement-opsonized RBC in vitro, processes strictly dependent on Mac-1 and complement C3. Thus, FcgammaR signaling through the Vav and Rac proteins in neutrophils is critical for stimulating immune complex disease while Vav- and Rac-independent pathways promote Mac-1/complement C3-dependent functions.  相似文献   

7.
Vav proteins, masters of the world of cytoskeleton organization   总被引:7,自引:0,他引:7  
Vav proteins are evolutionarily conserved from nematodes to mammals and play a pivotal role in many aspects of cellular signaling, coupling cell surface receptors to various effectors functions. In mammals, there are three family members; Vav1 is specifically expressed in the hematopoietic system, whereas Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain multiple domains that enable their function in various fashions. The participation of the Vav proteins in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation will be discussed in this review. We will also cover how the Vav proteins succeed in controlling these processes by their function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. The contribution of the Vav proteins in a GEF-independent manner to the organization of the cytoskeleton will also be deliberated. The scope of this review is to highlight the numerous roles of the Vav signal transducer proteins in actin organization.  相似文献   

8.
The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.  相似文献   

9.
Vav and Vav2 are members of the Dbl family of proteins that act as guanine nucleotide exchange factors (GEFs) for Rho family proteins. Whereas Vav expression is restricted to cells of hematopoietic origin, Vav2 is widely expressed. Although Vav and Vav2 share highly related structural similarities and high sequence identity in their Dbl homology domains, it has been reported that they are active GEFs with distinct substrate specificities toward Rho family members. Whereas Vav displayed GEF activity for Rac1, Cdc42, RhoA, and RhoG, Vav2 was reported to exhibit GEF activity for RhoA, RhoB, and RhoG but not for Rac1 or Cdc42. Consistent with their distinct substrate targets, it was found that constitutively activated versions of Vav and Vav2 caused distinct transformed phenotypes when expressed in NIH 3T3 cells. In contrast to the previous findings, we found that Vav2 can act as a potent GEF for Cdc42, Rac1, and RhoA in vitro. Furthermore, we found that NH(2)-terminally truncated and activated Vav and Vav2 caused indistinguishable transforming actions in NIH 3T3 cells that required Cdc42, Rac1, and RhoA function. In addition, like Vav and Rac1, we found that Vav2 activated the Jun NH(2)-terminal kinase cascade and also caused the formation of lamellipodia and membrane ruffles in NIH 3T3 cells. Finally, Vav2-transformed NIH 3T3 cells showed up-regulated levels of Rac-GTP. We conclude that Vav2 and Vav share overlapping downstream targets and are activators of multiple Rho family proteins. Therefore, Vav2 may mediate the same cellular consequences in nonhematopoietic cells as Vav does in hematopoietic cells.  相似文献   

10.
Although Vav can act as a guanine nucleotide exchange factor for RhoA, Rac1, and Cdc42, its transforming activity has been ascribed primarily to its ability to activate Rac1. However, because activated Vav, but not Rac-specific guanine nucleotide exchange factors, exhibits very potent focus-forming transforming activity when assayed in NIH 3T3 cells, Vav transforming activity must also involve activation of Rac-independent pathways. In this study, we determined the involvement of other Rho family proteins and their signaling pathways in Vav transformation. We found that RhoA, Rac1, and Cdc42 functions are all required for Vav transforming activity. Furthermore, we determined that Vav activation of nuclear factor-kappaB and the Jun NH2-terminal kinase mitogen-activated protein kinase (MAPK) is necessary for full transformation by Vav, whereas p38 MAPK does not seem to play an important role. We also determined that Vav is a weak activator of Elk-1 via a Ras- and MAPK/extracellular signal-regulated kinase kinase-dependent pathway, and this activity was essential for Vav transformation. Thus, we conclude that full Vav transforming activation is mediated by the activation of multiple small GTPases and their subsequent activation of signaling pathways that regulate changes in gene expression. Because Vav is activated by the epidermal growth factor receptor and other tyrosine kinases involved in cancer development, defining the role of aberrant Vav signaling may identify activities of receptor tyrosine kinases important for human oncogenesis.  相似文献   

11.
Background Dbl, a guanine nucleotide exchange factor (GEF) for members of the Rho family of small GTPases, is the prototype of a family of 15 related proteins. The majority of proteins that contain a DH (Dbl homology) domain were isolated as oncogenes in transfection assays, but two members of the DH family, FGD1 (the product of the faciogenital dysplasia or Aarskog–Scott syndrome locus) and Vav, have been shown to be essential for normal embryonic development. Mutations to the FGD1 gene result in a human developmental disorder affecting specific skeletal structures, including elements of the face, cervical vertebrae and distal extremities. Homozygous Vav−/− knockout mice embryos are not viable past the blastocyst stage, indicating an essential role of Vav in embryonic implantation.Results Here, we show that the microinjection of FGD1 and Vav into Swiss 3T3 fibroblasts induces the polymerization of actin and the assembly of clustered integrin complexes. FGD1 activates Cdc42, whereas Vav activates Rho, Rac and Cdc42. In addition, FGD1 and Vav stimulate the mitogen activated protein kinase cascade that leads to activation of the c-Jun kinase SAPK/JNK1.Conclusions We conclude that FGD1 and Vav are regulators of the Rho GTPase family. Along with their target proteins Cdc42, Rac and Rho, FGD1 and Vav control essential signals required during embryonic development.  相似文献   

12.
13.
The Vav family of proteins have the potential to act as both signalling adapters and GEFs for Rho GTPases. They have therefore been proposed as regulators of the cytoskeleton in various cell types. We have used macrophages from mice deficient in all three Vav isoforms to determine how their function affects cell morphology and migration. Macrophages lacking Vav proteins adopt an elongated morphology and have enhanced migratory persistence in culture. To investigate the pathways through which Vav proteins exert their effects we analysed the responses of macrophages to the chemoattractant CSF-1 and to adhesion. We found that morphological and signalling responses of macrophages to CSF-1 did not require Vav proteins. In contrast, adhesion-induced cell spreading, RhoA and Rac1 activation and cell signalling were all dependent on Vav proteins. We propose that Vav proteins affect macrophage morphology and motile behaviour by coupling adhesion receptors to Rac1 and RhoA activity and regulating adhesion signalling events such as paxillin and ERK1/2 phosphorylation by acting as adapters.  相似文献   

14.

Background

Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity.

Results

We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation.

Conclusion

Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1.  相似文献   

15.
The proto-oncogene product p95Vav (Vav) undergoes rapid phosphorylation on tyrosine following stimulation of the T or B cell antigen receptor, and in response to a variety of other cell surface stimuli. Vav contains, among other, a guanine nucleotide exchange factor domain with homology to the Rho/Rac/CDC42 exchange protein Db1. It has been recently shown that Vav is functionally linked to small GTPases of the Rho family, suggesting that it is an activator of Rho GTPases and may participate in regulation of cytoskeletal organization. The present study shows that cell adhesion to fibronectin triggers rapid phosphorylation of Vav on tyrosine in Vav-transfected CHO cells and in Jurkat T cells. Vav phosphorylation is strongly dependent on adhesion and is mediated by beta 1 integrins. Furthermore, Vav overexpression enhances the adhesion-dependent increase in the rate and extent of phosphorylation on focal adhesion kinase and paxillin, and the formation of stress fibers and lamellipodia. In addition, there is a marked increase in the amount of Vav localized to the triton-insoluble fraction following 1 h of incubation on FN. Finally, Vav increases the growth rate of the cells in an adhesion-dependent manner. Our results strongly implicate Vav as a mediator of integrin signal transduction.  相似文献   

16.
Heo J  Thapar R  Campbell SL 《Biochemistry》2005,44(17):6573-6585
Vav proteins are Rho GTPase-specific guanine nucleotide exchange factors (GEFs) that are distinguished by the tandem arrangement of Dbl homology (DH), Pleckstrin homology (PH), and cysteine rich domains (CRD). Whereas the tandem DH-PH arrangement is conserved among Rho GEFs, the presence of the CRD is unique to Vav family members and is required for efficient nucleotide exchange. We provide evidence that Vav2-mediated nucleotide exchange of Rho GTPases follows the Theorell-Chance mechanism in which the Vav2.Rho GTPase complex is the major species during the exchange process and the Vav2.GDP-Mg(2+).Rho GTPase ternary complex is present only transiently. The GTPase specificity for the DH-PH-CRD Vav2 in vitro follows this order: Rac1 > Cdc42 > RhoA. Results obtained from fluorescence anisotropy and NMR chemical shift mapping experiments indicate that the isolated Vav1 CRD is capable of directly associating with Rac1, and residues K116 and S83 that are in the proximity of the P-loop and the guanine base either are part of this binding interface or undergo a conformational change in response to CRD binding. The NMR studies are supported by kinetic measurements on Rac1 mutants S83A, K116A, and K116Q and Vav2 CRD mutant K533A in that these mutants affect both the initial binding event of Vav2 with Rac1 (k(on)) and the rate-limiting dissociation of Vav2 from the Vav2.Rac1 binary complex (thereby influencing the enzyme turnover number, k(cat)). The results suggest that the CRD domain in Vav proteins plays an active role, affecting both the k(on) and the k(cat) for Vav-mediated nucleotide exchange on Rho GTPases.  相似文献   

17.
Collagen phagocytosis is a crucial alpha2beta1-integrin-dependent process that mediates extracellular matrix remodeling by fibroblasts. We showed previously that after initial contact with collagen, activated Rac1 accelerates collagen phagocytosis but the Rac guanine nucleotide exchange factors (GEFs) that regulate Rac are not defined. We examined here the GEFs that regulate collagen phagocytosis in mouse fibroblasts. Collagen binding enhanced Rac1 activity (5-20 min) but not Cdc42 or RhoA activity. Analysis of collagen bead-associated proteins showed enrichment with Vav2, which correlated temporally with increased Rac1 activity. Knockdown of Vav2 prevented Rac activation, recruitment of Rac1 to collagen bead binding sites, and collagen bead binding, but knockdown of Sos-1 or beta-Pix had no effect on Rac activation or collagen binding. Vav2 was associated with the nucleotide-free Rac1 mutant (G15ARac1) after collagen binding. Collagen bead binding promoted phosphorylation of Vav2, which temporally correlated with Rac1 activation and which required Src kinase activity. Blockage of Src activity prevented collagen bead-induced Rac activation and collagen bead binding. Collectively these data indicate that Vav2 regulates the Rac1 activity associated with the binding step of collagen phagocytosis.  相似文献   

18.
Vav proteins belong to the family of guanine-nucleotide-exchange factors for the Rho/Rac family of small G-proteins. In addition, they serve as important adapter proteins for the activation of PLCgamma (phospholipase Cgamma) isoforms by ITAM (immunoreceptor tyrosine-based activation motif) receptors, including the platelet collagen receptor GPVI (glycoprotein VI). Vav proteins are also regulated downstream of integrins, including the major platelet integrin alphaIIbbeta3, which has recently been shown to regulate PLCgamma2. In the present study, we have investigated the role of Vav family proteins in filopodia and lamellipodia formation on fibrinogen using platelets deficient in Vav1 and Vav3. Wild-type mouse platelets undergo a limited degree of spreading on fibrinogen, characterized by the formation of numerous filopodia and limited lamellipodia structures. Platelets deficient in Vav1 and Vav3 exhibit reduced filopodia and lamellipodia formation during spreading on fibrinogen. This is accompanied by reduced alphaIIbbeta3-mediated PLCgamma2 tyrosine phosphorylation and reduced Ca(2+) mobilization. In contrast, the G-protein agonist thrombin stimulates full spreading of control and Vav1/3-deficient platelets. Consistent with this, stimulation of F-actin (filamentous actin) formation and Rac activation by thrombin is not altered in Vav-deficient cells. These results demonstrate that Vav1 and Vav3 are required for optimal spreading and regulation of PLCgamma2 by integrin alphaIIbbeta3, but that their requirement is by-passed upon G-protein receptor activation.  相似文献   

19.
Vav family proteins are guanine nucleotide exchange factors for the Rho/Rac family of small GTP-binding proteins. In addition, they have domains that mediate protein-protein interactions, including one Src homology 2 (SH2) and two Src homology 3 (SH3) domains. Vav1, Vav2, and Vav3 play a crucial role in the regulation of phospholipase C gamma (PLC gamma) isoforms by immuno-tyrosine-based activation motif (ITAM)-coupled receptors, including the T- and B-cell antigen receptors. We have reported in platelets, however, that Vav1 and Vav2 are not required for activation of PLC gamma 2 in response to stimulation of the ITAM-coupled collagen receptor glycoprotein VI (GPVI). Here we report that Vav3 is tyrosinephosphorylated upon activation of GPVI but that Vav3-deficient platelets also exhibit a normal response upon activation of the ITAM receptor. In sharp contrast, platelets deficient in both Vav1 and Vav3 show a marked inhibition of aggregation and spreading upon activation of GPVI, which is associated with a reduction in tyrosine phosphorylation of PLC gamma 2. The phenotype of Vav1/2/3 triple-deficient platelets is similar to that of Vav1/3 double-deficient cells. These results demonstrate that Vav3 and Vav1 play crucial but redundant roles in the activation of PLC gamma 2 by GPVI. This is the first time that absolute redundancy between two protein isoforms has been observed with respect to the regulation of PLC gamma 2 in platelets.  相似文献   

20.
The Vav family is a group of signal transduction molecules that activate Rho/Rac GTPases during cell signaling. Experiments using knockout mice have indicated that the three Vav proteins present in mammals (Vav1, Vav2, and Vav3) are essential for proper signaling responses in hematopoietic cells. However, Vav2 and Vav3 are also highly expressed in nonhematopoietic tissues, suggesting that they may have additional functions outside blood cells. Here, we report that this is the case for Vav2, because the disruption of its locus in mice causes tachycardia, hypertension, and defects in the heart, arterial walls, and kidneys. We also provide physiological and pharmacological evidence demonstrating that the hypertensive condition of Vav2-deficient mice is due to a chronic stimulation of the renin/angiotensin II and sympathetic nervous systems. Together, these results indicate that Vav2 plays crucial roles in the maintenance of cardiovascular homeostasis in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号