首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
c-Met is essential for wound healing in the skin   总被引:1,自引:0,他引:1       下载免费PDF全文
Wound healing of the skin is a crucial regenerative process in adult mammals. We examined wound healing in conditional mutant mice, in which the c-Met gene that encodes the receptor of hepatocyte growth factor/scatter factor was mutated in the epidermis by cre recombinase. c-Met-deficient keratinocytes were unable to contribute to the reepithelialization of skin wounds. In conditional c-Met mutant mice, wound closure was slightly attenuated, but occurred exclusively by a few (5%) keratinocytes that had escaped recombination. This demonstrates that the wound process selected and amplified residual cells that express a functional c-Met receptor. We also cultured primary keratinocytes from the skin of conditional c-Met mutant mice and examined them in scratch wound assays. Again, closure of scratch wounds occurred by the few remaining c-Met-positive cells. Our data show that c-Met signaling not only controls cell growth and migration during embryogenesis but is also essential for the generation of the hyperproliferative epithelium in skin wounds, and thus for a fundamental regenerative process in the adult.  相似文献   

2.
Cutaneous wound repair is a tightly regulated and dynamic process involving blood clotting, inflammation, formation of new tissue, and tissue remodeling. Gene expression profiling of mouse and human wounds as well as first proteomics studies have identified a large number of genes and proteins that are up- or downregulated by skin injury, and some of them have been functionally characterized in animal models of wound repair. Among the key regulators of wound repair are growth factors, which control migration, proliferation, differentiation and survival of cells at different stages of the healing process. This review summarizes the results of functional studies performed in mammals that have identified important roles of receptor tyrosine kinases and their ligands in wound repair.  相似文献   

3.
The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001) and day 14 (P<0.001). Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01). In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.  相似文献   

4.
A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements.  相似文献   

5.
6.
Chronic and non-healing skin wounds represent a significant clinical, economic and social problem worldwide. Currently, there are few effective treatments. Lack of well-defined animal models to investigate wound healing mechanisms and furthermore to identify new and more effective therapeutic agents still remains a major challenge. Pig skin wound healing is close to humans. However, standardized pig wound healing models with demonstrated validity for testing new wound healing candidates are unavailable. Here we report a systematic evaluation and establishment of both acute and diabetic wound healing models in pigs, including wound-creating pattern for drug treatment versus control, measurements of diabetic parameters and the time for detecting delayed wound healing. We find that treatment and control wounds should be on the opposite and corresponding sides of a pig. We demonstrate a strong correlation between duration of diabetic conditions and the length of delay in wound closure. Using these new models, we narrow down the minimum therapeutic entity of secreted Hsp90α to a 27-amino acid peptide, called fragment-8 (F-8). In addition, results of histochemistry and immunohistochemistry analyses reveal more organized epidermis and dermis in Hsp90α-healed wounds than the control. Finally, Hsp90α uses a similar signaling mechanism to promote migration of isolated pig and human keratinocytes and dermal fibroblasts. This is the first report that shows standardized pig models for acute and diabetic wound healing studies and proves its usefulness with both an approved drug and a new therapeutic agent.  相似文献   

7.
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.  相似文献   

8.
We have investigated the wound-healing effects of mesenchymal stem cells (MSCs) in combination with human amniotic membrane (HAM) when grafted into full-thickness skin defects of rabbits. Five defects in each of four groups were respectively treated with HAM loaded with autologous MSCs (group A), HAM loaded with allologous MSCs (group B), HAM with injected autologous MSCs (group C), and HAM with injected allologous MSCs (group D). The size of the wounds was calculated for each group at 7, 12, and 15 days after grafting. The wounds were subsequently harvested at 25 days after grafting. Sections stained with hematoxylin and eosin were used to determine the quality of wound healing, as based on the characteristics and amount of granulated tissue in the epidermal and dermal layers. Groups A and B showed the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen on post-operative days 7, 12, and 15. Although a slight trend toward improved wound healing was seen in group A compared with group B, no statistically significant difference was found at any time point between the two groups. Histological examination of healed wounds from groups A and B showed a thin epidermis with mature differentiation and collagen bundle deposition plus recovered skin appendages in the dermal layer. In contrast, groups C and D showed thickened epidermis with immature epithelial cells and increased fibroblast proliferation with only partially recovered skin appendages in the dermal layer. Thus, the graft of HAM loaded with MSCs played an effective role during the healing of skin defects in rabbits, with no significant difference being observed in wound healing between autologous and allologous MSC transplantation. This study was supported by research funds from Dong-A University.  相似文献   

9.
Local transplantation of stem cells has therapeutic effects on skin damage but cannot provide satisfactory wound healing. Studies on the mechanisms underlying the therapeutic effects of stem cells on skin wound healing will be needed. Hence, in the present study, we explored the role of Caveolin-1 in epidermal stem cells (EpiSCs) in the modulation of wound healing. We first isolated EpiSCs from mouse skin tissues and established stable EpiSCs with overexpression of Caveolin-1 using a lentiviral construct. We then evaluated the epidermal growth factor (EGF)-induced cell proliferation ability using cell counting Kit-8 (CCK-8) assay and assessed EpiSC pluripotency by examining Nanog mRNA levels in EpiSCs. Furthermore, we treated mice with skin burn injury using EpiSCs with overexpression of Caveolin-1. Histological examinations were conducted to evaluate re-epithelialization, wound scores, cell proliferation and capillary density in wounds. We found that overexpression of Caveolin-1 in EpiSCs promoted EGF-induced cell proliferation ability and increased wound closure in a mouse model of skin burn injury. Histological evaluation demonstrated that overexpression of Caveolin-1 in EpiSCs promoted re-epithelialization in wounds, enhanced cellularity, and increased vasculature, as well as increased wound scores. Taken together, our results suggested that Caveolin-1 expression in the EpiSCs play a critical role in the regulation of EpiSC proliferation ability and alteration of EpiSC proliferation ability may be an effective approach in promoting EpiSC-based therapy in skin wound healing.  相似文献   

10.
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds.  相似文献   

11.
Multipotent mesenchymal stem cells have recently emerged as an attractive cell type for the treatment of diabetes-associated wounds. The purpose of this study was to examine the potential biological function of human placenta-derived mesenchymal stem cells (PMSCs) in wound healing in diabetic Goto-Kakizaki (GK) rats. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. A full-thickness circular excisional wound was created on the dorsum of each rat. Red fluorescent CM-DiI-labeled PMSCs were injected intradermally around the wound in the treatment group. After complete wound healing, full-thickness skin samples were taken from the wound sites for histological evaluation of the volume and density of vessels. Our data showed that the extent of wound closure was significantly enhanced in the PMSCs group compared with the no-graft controls. Microvessel density in wound bed biopsy sites was significantly higher in the PMSCs group compared with the no-graft controls. Most surprisingly, immunohistochemical studies confirmed that transplanted PMSCs localized to the wound tissue and were incorporated into recipient vasculature with improved angiogenesis. Notably, PMSCs secreted comparable amounts of proangiogenic molecules, such as VEGF, HGF, bFGF, TGF-β and IGF-1 at bioactive levels. This study demonstrated that PMSCs improved the wound healing rate in diabetic rats. It is speculated that this effect can be attributed to the PMSCs engraftment resulting in vascular regeneration via direct de novo differentiation and paracrine mechanisms. Thus, placenta-derived mesenchymal stem cells are implicated as a potential angiogenesis cell therapy for repair-resistant chronic wounds in diabetic patients.  相似文献   

12.
Fibronectin (Fn) has been shown to play an important role in wound healing because it appears to be the stimulus for migration of fibroblasts and epidermal cells. The purpose of this study was to investigate whether topical application of plasma Fn (pFn) improves healing of full-thickness skin wounds in rats. A round section of full-thickness skin (diameter of approximately 15 mm) was resected in rats. Animals were then divided into two groups, and wounds were treated topically with a single application of human plasma albumin (control group) or human pFn (FN group). Wound closure rate, hydroxyproline concentration, and histologic features (immunohistochemical staining) were evaluated. The FN group had a significantly higher wound closure rate and hydroxyproline level in the skin than the control group. Histologic analysis of macrophage and fibroblast migration, collagen regeneration, and epithelialization were significantly increased in the FN group compared with the control group. A single topical application of pFn increased the migration of macrophages, myofibroblasts, and fibroblasts. Moreover, further release of transforming growth factor-beta1 from activated fibroblasts, keratinocytes, and epithelial cells may also contribute to the beneficial effect of pFn on wound healing.  相似文献   

13.
The rate of healing of a surgical wound was studied in two teleost fish, one with a tropical, and the other with a temperate temperature range. Comparisons were made of both the rate and qualitative nature of wound healing within and between species at temperatures of 30,23,10 and 5° C. The rate of wound healing was found to be proportional to temperature and temperature stress had little effect on healing rates. The findings were related to reported rates of wound healing in man. In general the wounds studied healed at a rate comparable to those reported for the healing of superficial skin wounds in man and other mammals despite the fact that the fish wounds were not merely superficial but involved integument and muscle.  相似文献   

14.
Non-healing skin ulcers are often resistant to most common therapies. Treatment with growth factors has been demonstrated to improve closure of chronic wounds. Here we investigate whether lyophilized culture supernatant of freshly isolated peripheral blood mononuclear cells (PBMC) is able to enhance wound healing. PBMC from healthy human individuals were prepared and cultured for 24 hours. Supernatants were collected, dialyzed and lyophilized (SECPBMC). Six mm punch biopsy wounds were set on the backs of C57BL/6J-mice and SECPBMC containing emulsion or controls were applied daily for three days. Morphology and neo-angiogenesis were analyzed by H&E-staining and CD31 immuno-staining, respectively. In vitro effects on diverse skin cells were investigated by migration assays, cell cycle analysis, and tube formation assay. Signaling pathways were analyzed by Western blot analysis. Application of SECPBMC on 6 mm punch biopsy wounds significantly enhanced wound closure. H&E staining of the wounds after 6 days revealed that wound healing was more advanced after application of SECPBMC containing emulsion. Furthermore, there was a massive increase in CD31 positive cells, indicating enhanced neo-angiogenesis. In primary human fibroblasts (FB) and keratinocytes (KC) migration but not proliferation was induced. In endothelial cells (EC) SECPBMC induced proliferation and tube-formation in a matrigel-assay. In addition, SECPBMC treatment of skin cells led to the induction of multiple signaling pathways involved in cell migration, proliferation and survival. In summary, we could show that emulsions containing the secretome of PBMC derived from healthy individuals accelerates wound healing in a mouse model and induce wound healing associated mechanisms in human primary skin cells. The formulation and use of such emulsions might therefore represent a possible novel option for the treatment of non-healing skin ulcers.  相似文献   

15.
微小RNA是一类真核细胞中广泛存在的内源性转录后调控分子,其在细胞的增殖、分化、凋亡、迁移等过程中发挥了重要的调控作用。皮肤创伤修复涉及复杂的细胞与分子的相互作用网络。近年来研究表明micro RNAs在皮肤创伤修复中发挥调控作用,引人关注。miR-21作为重要的癌基因是目前研究的最多的miRNAs分子之一,其在皮肤创伤修复中的作用研究也越来越受到重视。研究表明miR-21参与了细胞增殖与迁移、炎症反应、血管生成和细胞外基质合成等重要修复相关事件的调控。因此,阐明miR-21分子在正常皮肤创伤愈合中的作用,厘清miR-21表达失调在修复不足和修复过度中的功能,将深化我们对于皮肤创伤愈合基本理论的认识,并为促进创面愈合与防治修复不足和过度提供潜在的治疗靶点。本文就miR-21分子在正常皮肤创伤修复、慢性难愈性创面和增生性瘢痕中作用的研究进展进行综述展望。  相似文献   

16.
Skin repair and scar formation: the central role of TGF-beta   总被引:1,自引:0,他引:1  
Wound healing is a complex process that we have only recently begun to understand. Central to wound repair is transforming growth factor beta (TGF-beta), a cytokine secreted by several different cell types involved in healing. TGF-beta has diverse effects, depending upon the tissue studied. This review focuses on healing in skin, particularly the phases of cutaneous wound repair and the role of TGF-beta in normal and impaired wound-healing models. It also explores TGF-beta activity in scarless foetal wound healing. Knowledge of TGF-beta function in scarless repair is critical to improving healing in clinical scenarios, such as diabetic wounds and hypertrophic scars.  相似文献   

17.
《Cytotherapy》2021,23(8):672-676
Background aimsThe treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood.MethodsThe authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure.ResultsThe authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism.ConclusionsThese data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.  相似文献   

18.
SW Kim  HZ Zhang  L Guo  JM Kim  MH Kim 《PloS one》2012,7(7):e41105
Although human amniotic mesenchymal stem cells (AMMs) have been recognised as a promising stem cell resource, their therapeutic potential for wound healing has not been widely investigated. In this study, we evaluated the therapeutic potential of AMMs using a diabetic mouse wound model. Quantitative real-time PCR and ELISA results revealed that the angiogenic factors, IGF-1, EGF and IL-8 were markedly upregulated in AMMs when compared with adipose-derived mesenchymal stem cells (ADMs) and dermal fibroblasts. In vitro scratch wound assays also showed that AMM-derived conditioned media (CM) significantly accelerated wound closure. Diabetic mice were generated using streptozotocin and wounds were created by skin excision, followed by AMM transplantation. AMM transplantation significantly promoted wound healing and increased re-epithelialization and cellularity. Notably, transplanted AMMs exhibited high engraftment rates and expressed keratinocyte-specific proteins and cytokeratin in the wound area, indicating a direct contribution to cutaneous closure. Taken together, these data suggest that AMMs possess considerable therapeutic potential for chronic wounds through the secretion of angiogenic factors and enhanced engraftment/differentiation capabilities.  相似文献   

19.
The sequential response of wound closure in the skin of the lesser octopus Eledone cirrhosa is described following experimentally induced infections by the Gram-negative bacterium, Vibrio tubiashii. Results show that the post-infection healing response varied considerably from the response observed in non-infected wounds reported previously. Prominent among the findings was the much more extensive haemocyte response noted throughout healing when compared with non-infected wounds. In addition, there was a generalized inhibition of epidermal migration so that wound closure was never completed during the experiment. The presence of a 'double tier' amorphous zone was evident at certain stages of the healing response and the implications of this finding in relation to post-infection wound closure is discussed.  相似文献   

20.
Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号