首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cytochrome P450 epoxygenases (CYP450) have been recently shown to promote malignant progression. Here we investigated the mRNA and protein expression and potential clinical relevance of CYP2C9 in esophageal cancer. Highest expression was detected in esophageal adenocarcinoma (EAC; n=78) and adjacent esophageal mucosa (NEM; n=79). Levels of CYP2C9 in EAC and NEM were significantly higher compared to esophageal squamous cell carcinoma (ESCC; n=105). Early tumor stages and well-differentiated tumors showed a significantly higher CYP2C9 expression compared to progressed tumors. Moreover, CYP2C9 expression was correlated to high Ki-67 labeling indices in EAC and Ki-67 positive tumor cells in EAC and ESCC. Selective inhibition of CYP2C9 decreased tumor cell proliferation (KYSE30, PT1590 and OE19) in vitro, which was abolished by 11,12-epoxyeicosatrienoic acid (11,12-EET). Cell-cycle analysis using FACS revealed that inhibition of CYP2C9 leads to a G0/G1 phase cell-cycle arrest. CYP2C9 seems to be relevant for early esophageal cancer development by promoting tumor cell proliferation. Pharmacological inhibition of CYP2C9 might contribute to a more efficient therapy in CYP2C9 highly expressing esophageal cancers.  相似文献   

3.
4.

Background

Carcinoma of the esophagus has a high case fatality ratio and is now the 6th most common cause of cancer deaths in the world. We previously conducted a study to profile the expression of miRNAs in esophageal adenocarcinoma (EAC) pre and post induction therapy. Of the miRNAs differentially expressed post induction chemoradiation, miR-145, a known tumor suppressor miRNA, was upregulated 8-fold following induction therapy, however, its expression was associated with shorter disease-free survival. This unexpected result was explored in this current study.

Methods

In order to study the role of miR-145 in EAC, miRNA-145 was overexpressed in 3 EAC cell lines (OE33, FLO-1, SK-GT-4) and one ESCC cell line (KYSE-410). After validation of the expression of miR-145, hallmarks of cancer such as cell proliferation, resistance to chemotherapy drugs or anoikis, and cell invasion were analyzed.

Results

There were no differences in cell proliferation and 5 FU resistance between miR145 cell lines and the control cell lines. miR-145 expression also had no effect on cisplatin resistance in two of three cell lines (OE33 and FLO-1), but miR-145 appeared to protect SK-GT-4 cells against cisplatin treatment. However, there was a significant difference in cell invasion, cell adhesion and resistance to anoikis. All three EAC miR-145 cell lines invaded more than their respective controls. Similarly, OE33 and SK-GT-4 miR-145 cell lines were able to survive longer in a suspension state.

Discussion

While expression of miR-145 in ESCC stopped proliferation and invasion, expression of miR-145 in EAC cells enhanced invasion and anoikis resistance. Although more work is required to understand how miR-145 conveys these effects, expression of miR-145 appears to promote EAC progression by enhancing invasion and protection against anoikis, which could in turn facilitate distant metastasis.  相似文献   

5.
6.
Beclin-1 has a central role in the regulation of autophagy. Barrett's esophagus (BE) is associated with a significantly increased risk for the development of esophageal adenocarcinoma (EAC). In the current study, we evaluated the role of Beclin-1 and autophagy in the EAC. Biopsies obtained from patients with BE and EAC, tissues from a rat model of BE and EAC, and esophageal cell lines were evaluated for the expression of Beclin-1 by immunohistochemistry, immunoblotting, or RT-PCR. Since reflux of bile acids is important in EAC, we also evaluated the effect of exposure to deoxycholic acid (DCA) on autophagy and Beclin-1 expression. Beclin-1 expression was high in squamous epithelium and nondysplastic BE, whereas its expression was low in dysplastic BE and EAC. The same pattern of expression was observed in rat tissues and in esophageal cell lines. Normal esophageal epithelium and HET-1A cells (derived from normal squamous epithelium) show high levels of Beclin-1, but lower levels of Beclin-1 were found in BE and EAC cell lines (CP-A, CP-C, and OE33). Acute exposure to DCA led to increased Beclin-1 expression and increased autophagy as evaluated by electron microscopy and counting percentage of GFP-LC3-positive BE cells with punctate pattern. In contrast, chronic exposure to DCA did not result in the alteration of Beclin-1 levels or autophagy. In summary, these data suggest that autophagy is initially activated in response to bile acids, but chronic exposure to bile acids leads to decreased Beclin-1 expression and autophagy resistance.  相似文献   

7.
Esophageal cancer, including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), has a poor prognosis and limited therapeutic options. Chimeric antigen receptor (CAR)-T cells represent a potential ESCC treatment. In this study, we examined CD276 expression in healthy and esophageal tumor tissues and explored the tumoricidal potential of CD276-targeting CAR-T cells in ESCC. CD276 was strongly and homogenously expressed in ESCC and EAC tumor lesions but mildly in healthy tissues, representing a good target for CAR-T cell therapy. We generated CD276-directed CAR-T cells with a humanized antigen-recognizing domain and CD28 or 4–1BB co-stimulation. CD276-specific CAR-T cells efficiently killed ESCC tumor cells in an antigen-dependent manner both in vitro and in vivo. In patient-derived xenograft models, CAR-T cells induced tumor regression and extended mouse survival. In addition, CAR-T cells generated from patient T cells demonstrated potent cytotoxicity against autologous tumor cells. Our study indicates that CD276 is an attractive target for ESCC therapy, and CD276-targeting CAR-T cells are worth testing in ESCC clinical trials.  相似文献   

8.
Epidermal growth factor receptor (EGFR) overexpression is observed in a number of malignancies, especially those of esophageal squamous cell origin. However, little is known about the biological functions of EGFR in primary esophageal squamous epithelial cells. Using newly established primary human esophageal squamous epithelial cells as a platform, we overexpressed EGFR through retroviral transduction and established novel three-dimensional organotypic cultures. Additionally, EGFR was targeted in a cell type- and tissue-specific fashion to the esophageal epithelium in transgenic mice. EGFR overexpression in primary esophageal keratinocytes resulted in the biochemical activation of Akt and STAT pathways and induced enhanced cell migration and cell aggregation. When established in organotypic culture, EGFR-overexpressing cells had evidence of epithelial cell hyperproliferation and hyperplasia. These effects were also observed in EGFR-overexpressing transgenic mice and the esophageal cell lines established thereof. In particular, EGFR-induced effects upon aggregation appear to be mediated through the relocalization of p120 from the cytoplasm to the membrane and increased interaction with E-cadherin. EGFR modulates cell migration through the up-regulation of matrix metalloproteinase 1. Taken together, the functional effects of EGFR overexpression help to explain its role in the initiating steps of esophageal squamous carcinogenesis.  相似文献   

9.
Wang XX  Liu R  Jin SQ  Fan FY  Zhan QM 《Cell research》2006,16(4):356-366
Attrora-A kinase, a serine/threonine protein kinase, is a potential oncogene. Amplification and overexpression of Aurora-A have been found in several types of human tumors, including esophageal squamous cell carcinoma (ESCC). It has been demonstrated that cells overexpressing Attrora-A are more resistant to cisplatin-induced apoptosis. However, the molecular mechanisms mediating these effects remain largely unknown. In this report, we showed that overexpression of Attrora-A through stable transfection of pEGFP-Aurora-A in human ESCC KYSE150 cells significantly promoted cell proliferation and inhibited cisplatin- or UV irradiation-induced apoptosis. Cleavages of caspase-3 and poly (ADPribose) polymerase (PARP) in Attrora-A overexpressing cells were substantially reduced after cisplatin or UV treatment. Furthermore, we found that silencing of endogenous Aurora-A kinase with siRNA substantially enhanced sensitivity to cisplatin- or UV-induced apoptosis in human ESCC EC9706 cells. In parallel, overexpression of Aurora-A potently upregulated the expression of Bcl-2. Moreover, the knockdown of Bcl-2 by siRNA abrogated the Aurora-A's effect on inhibiting apoptosis. Taken together, these data provide evidence that Aurora-A overexpression promoting cell proliferation and inhibiting apoptosis, suggesting a novel mechanism that is closely related to malignant phenotype and anti-cancer drugs resistance of ESCC cells.  相似文献   

10.
齐天伟  张超  孙学峰 《生物磁学》2011,(17):3293-3295
目的:研究食管鳞癌(esophageal squamous cell carcinoma,ESCC)与食管腺癌(esophageal adenocarcinoma,EAC)的基因差异表达,探讨ESCC与EAC发生发展的基因学基础。方法:选取8例ESCC和8例EAC组织抽提mRNA,应用cDNA芯片技术通过芯片杂交、生物信息学处理,找出两者间差异表达基因。结果:采用BioStarH-40芯片发现差异表达基因541条,差异表达基因占13.8%,其中表达增强309条(显著增强73条),表达降低232条(显著降低61条)。结论:ESCC与EAC基因表达比较,差异有统计学意义,这些差异可能在两类肿瘤不同的生物学行为中起重要作用。  相似文献   

11.
The EGF (epidermal growth factor) receptor-tyrosine kinase inhibitor ZD1839 (Gefitinib, 'Iressa') blocks the cell signaling pathways involved in cell proliferation, survival, and angiogenesis in various cancer cells. TNF-related death apoptosis inducing ligand (TRAIL) acts as an anticancer agent. We investigated the antitumor effects of ZD1839 alone or in combination with TRAIL against human esophageal squamous cell cancer (ESCC) lines. Although all ESCC cells expressed EGF receptor at a protein level, the effect of ZD1839 on cell growth did not correlate with the level of EGFR expression and phosphorylation of EGF receptor protein in ESCC lines. ZD1839 caused a dose-dependent growth arrest at G0-G1 phase associated with increased p27 expression. As TE8 cells are resistant to TRAIL, we tested whether ZD1839 combined with TRAIL induced apoptosis of TE8 cells via the inhibition of EGF receptor signaling by ZD1839. ZD1839 inhibited the phosphorylation of Akt, and enhanced TRAIL-induced apoptosis via activation of caspase-3 and caspase-9, and inactivation of Bcl-xL. Our results indicated that ZD1839 has anti-cancer properties against human esophageal cancer cells. ZD1839 also augmented the anti-cancer activity of TRAIL, even in TRAIL-resistant tumors. These results suggest that treatment with ZD1839 and TRAIL may have potential in the treatment of ESCC patients.  相似文献   

12.
Hedgehog (Hh) signaling is frequently activated in human cancer, including esophageal cancer. Most esophageal cancers are diagnosed in the advanced stages, therefore, identifying the very alterations that drive esophageal carcinogenesis may help designing novel strategies to diagnose and treat the disease. Analysis of Hh signaling in precancerous lesions is a critical first step in determining the significance of this pathway for carcinogenesis. Here we report our data on Hh target gene expression in 174 human esophageal specimens [28 esophageal adenocarcinomas (EAC), 19 Barrett’s esophagus, 103 cases of esophageal squamous cell carcinoma (ESCC), and 24 of squamous dysplastic lesions], and in two rat models of esophageal cancer. We found that 96% of human EAC express Hh target genes. We showed that PTCH1 expression is the most reliable biomarker. In contrast to EAC, only 38% of ESCC express Hh target genes. We found activation of Hh signaling in precancerous lesions of ESCCs and EACs in different degrees (21% and 58% respectively). Expression of Hh target genes is frequently detected in severe squamous dysplasia/ carcinoma in situ (p=0.04) and Barrett’s esophagus (p=0.01). Unlike EAC, sonic hedgehog (Shh) expression was rare in ESCCs. Consistent with the human specimen data, we found a high percentage of Hh signaling activation in precancerous lesions in rat models. These data indicate that Hh signaling activation is an early molecular event in the development of esophageal cancer, particularly EAC.  相似文献   

13.

Background  

Aurora kinases and loss of p53 function are implicated in the carcinogenesis of aneuploid esophageal cancers. Their association with occurrence of multipolar mitoses in the two main histotypes of aneuploid esophageal squamous cell carcinoma (ESCC) and Barrett's adenocarcinoma (BAC) remains unclear. Here, we investigated the occurrence of multipolar mitoses, Aurora-A/-B gene copy numbers and expression/activation as well as p53 alterations in aneuploid ESCC and BAC cancer cell lines.  相似文献   

14.
Secreted protein, acidic and rich in cysteine (SPARC) has been characterized as an oncoprotein in esophageal squamous cell carcinoma (ESCC), but its involvement in the pathological development of esophageal adenocarcinoma (ESAD) remains poorly understood. In this study, we aimed to explore the sources of SPARC in the tumor microenvironment (TME) and its functional role in ESAD. Bioinformatic analysis was conducted using data from The Cancer Genome Atlas (TCGA)-esophageal cancer (ESCA) and Genotype-Tissue Expression (GTEx). ESAD tumor cell line OE33 and OE19 cells were used as in vitro cell models. Results showed that SPARC upregulation was associated with unfavorable disease-specific survival (DSS) in ESAD. ESAD tumor cells (OE33 and OE19) had no detectable SPARC protein expression. In contrast, IHC staining in ESAD tumor tissues suggested that peritumoral stromal cells (tumor-associated fibroblasts and macrophages) were the dominant SPARC source in TME. Exogenous SPARC induced partial epithelial-to-mesenchymal transition of ESAD cells, reflected by reduced CDH1 and elevated ZEB1/VIM expression at both mRNA and protein levels. Besides, exogenous SPARC enhanced tumor cell invasion. When TGFBR2 expression was inhibited, the activation of TGF-β signaling induced by exogenous SPARC was impaired. However, the activating effects were rescued by overexpressing mutant TGFBR2 resistant to the shRNA sequence. Copresence of exogenous SPARC and TGF-β1 induced higher expression of mesenchymal markers and enhanced the invading capability of ESAD cells than TGF-β1 alone. In conclusion, this study suggests a potential cross-talk between ESAD tumor stromal cells and cancer cells via a SPARC-TGF-β1 paracrine network.  相似文献   

15.
16.
Barrett's esophagus (BE) is a premalignant condition, where normal squamous epithelium is replaced by intestinal epithelium. BE is associated with an increased risk of developing esophageal adenocarcinoma (EAC). However, the BE cell of origin is not clear. We hypothesize that BE tissue originates from esophageal squamous cells, which can differentiate to columnar cells as a result of repeated exposure to gastric acid and bile acids, two components of refluxate implicated in BE pathology. To test this hypothesis, we repeatedly exposed squamous esophageal HET1A cells to 0.2 mM bile acid (BA) cocktail at pH 5.5 and developed an HET1AR-resistant cell line. These cells are able to survive and proliferate after repeated 2-h treatments with BA at pH 5.5. HET1AR cells are resistant to acidification and express markers of columnar differentiation, villin, CDX2, and cytokeratin 8/18. HET1AR cells have increased amounts of reactive oxygen species, concomitant with a decreased level and activity of manganese superoxide dismutase compared with parental cells. Furthermore, HET1AR cells express proteins and activate signaling pathways associated with inflammation, cell survival, and tumorigenesis that are thought to contribute to BE and EAC development. These include STAT3, NF-κB, epidermal growth factor receptor (EGFR), cyclooxygenase-2, interleukin-6, phosphorylated mammalian target of rapamycin (p-mTOR), and Mcl-1. The expression of prosurvival and inflammatory proteins and resistance to cell death could be partially modified by inhibition of STAT3 signaling. In summary, our study shows that long-term exposure of squamous cells to BA at acidic pH causes the cells to display the same characteristics and markers as BE.  相似文献   

17.
Esophageal cancer (EC) is the world's eighth most common malignant neoplasm and is ranked as the sixth leading cause of death related to cancer. Aberrant microRNA (miRNA) expression has been reported to be associated with esophageal squamous cell carcinoma. However, the molecular mechanism of miR-204-5p in esophageal squamous cell carcinoma (ESCC) is not clear. Therefore, the aim of this study was to investigate the potential role of miR-204-5p in ESCC. In the present study, we found that miR-204-5p could affect ESCC proliferation, invasion, apoptosis, and cell cycle in cell and mouse models. A dual-luciferase reporter assay showed that miR-204-5p expression was negatively correlated with interleukin-11 (IL-11) expression. IL-11 overexpression reversed the suppressive effects of miR-204-5p in the cell lines. These results indicated that miR-204-5p functions as a tumor suppressor by directly targeting IL-11 in ESCC.  相似文献   

18.
Tumor cells require high levels of cholesterol for membrane biogenesis for rapid proliferation during development. Beyond the acquired cholesterol from low-density lipoprotein (LDL) taken up from circulation, tumor cells can also biosynthesize cholesterol. The molecular mechanism underlying cholesterol anabolism in esophageal squamous cell carcinoma (ESCC) and its effect on patient prognosis are unclear. Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated in various cancer types; however, its role in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we identified that LPCAT1 is highly expressed in ESCC and that LPCAT1 reprograms cholesterol metabolism in ESCC. LPCAT1 expression was negatively correlated with patient prognosis. Cholesterol synthesis in ESCC cells was significantly inhibited following LPCAT1 knockdown; cell proliferation, invasion, and migration were significantly reduced, along with the growth of xenograft subcutaneous tumors. LPCAT1 could regulate the expression of the cholesterol synthesis enzyme, SQLE, by promoting the activation of PI3K, thereby regulating the entry of SP1/SREBPF2 into the nucleus. LPCAT1 also activates EGFR leading to the downregulation of INSIG-1 expression, facilitating the entry of SREBP-1 into the nucleus to promote cholesterol synthesis. Taken together, LPCAT1 reprograms tumor cell cholesterol metabolism in ESCC and can be used as a potential treatment target against ESCC.Subject terms: Cancer metabolism, Cancer prevention  相似文献   

19.
Autophagy is a kind of intracellular degradation pathway which could be regulated by many noncoding RNAs. ciRS-7, also called CDR1as, is a circular RNA that is relatively well studied at present. In our recent study, we have found that the expression of ciRS-7 is abnormally increased in the esophageal squamous cell carcinoma (ESCC), and may function as an oncogene to accelerate ESCC progression through sponging miR-876-5p. Meanwhile, another study showed that ciRS-7 is highly expressed in the triple-negative breast cancer (TNBC) and may function as a competing endogenous RNA of miR-1299 to maintain the high migration and invasive capacity of TNBC cells. Of interest, in the present work, we observed that ciRS-7 could inhibit starvation or rapamycin-induced autophagy of ESCC cells and miR-1299 promotes starvation or rapamycin-induced autophagy of ESCC cells. Mechanically, miR-1299 could directly bind to the 3′-untranslated region of epidermal growth factor receptor (EGFR) and then affects its downstream Akt-mTOR pathway in ESCC cells. Consistent with our past findings, ciRS-7 could also sponge miR-1299 in ESCC cells. Taken together, this study has shed light on that circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号