首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.  相似文献   

2.
【目的】从海洋环境中筛选出能有效抑制细菌群体感应的活性菌株,为以致病菌群体感应为靶点的新型疗法提供新的天然产物资源。【方法】以紫色杆菌(Chromobacteriumviolaceum)为报告菌,采用滤纸片法和双层软琼脂法相结合的筛选模型进行群体感应抑制活性菌的筛选。【结果】通过对美国圣璜岛海域海绵中分离出来的272株海洋细菌群体感应抑制活性的筛选,得到了具有抑制紫色杆菌素产生的细菌51株,其中74号菌株抑制效果最好,具有进一步研究的价值。【结论】海洋细菌中有很多具有抑制细菌群体感应效应的菌株,是天然群体感应抑制剂的潜在来源。  相似文献   

3.
李祎 《微生物学通报》2021,48(9):3305-3313
细菌在与噬菌体的长期共进化过程中形成多种抵抗噬菌体侵染的机制,其中群体感应参与的细菌抵御噬菌体侵染机制成为近年来的研究热点。群体感应与噬菌体之间的相互作用是复杂和多样的,本文将重点综述群体感应在噬菌体侵染中的作用、调控在噬菌体裂解-溶源转变的作用,以及群体感应与噬菌体的其他相互影响等内容,为噬菌体在细菌性疾病的治疗提供理论依据。  相似文献   

4.
5.
The evolutionary consequences of quorum sensing in regulating bacterial cooperation are not fully understood. In this study, we reveal unexpected effects of regulating public good production through quorum sensing on bacterial population dynamics, showing that quorum sensing can be a collectively harmful alternative to unregulated production. We analyze a birth-death model of bacterial population dynamics accounting for public good production and the presence of non-producing cheaters. Our model demonstrates that when demographic noise is a factor, the consequences of controlling public good production according to quorum sensing depend on the cost of public good production and the growth rate of populations in the absence of public goods. When public good production is inexpensive, quorum sensing is a destructive alternative to unconditional production, in terms of the mean population extinction time. When costs are higher, quorum sensing becomes a constructive strategy for the producing strain, both stabilizing cooperation and decreasing the risk of population extinction.  相似文献   

6.
Bacteria can coordinate community-wide behaviors through quorum sensing, that is, the secretion and sensing of autoinducer (AI) molecules. Bacterial quorum sensing is implicated in the regulation of pathologically relevant events such as biofilm formation, bacterial virulence, and drug resistance. Inhibitors of bacterial quorum sensing could therefore be useful therapeutics. Herein we report for the first time the discovery of several pyrogallol compounds as single digit micromolar inhibitors of bacterial quorum sensing in Vibrio harveyi.  相似文献   

7.
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.  相似文献   

8.
Understanding of the intracellular molecular machinery that is responsible for the complex collective behavior of multicellular populations is an exigent problem of modern biology. Quorum sensing, which allows bacteria to activate genetic programs cooperatively, provides an instructive and tractable example illuminating the causal relationships between the molecular organization of gene networks and the complex phenotypes they control. In this work we—to our knowledge for the first time—present a detailed model of the population-wide transition to quorum sensing using the example of Agrobacterium tumefaciens. We construct a model describing the Ti plasmid quorum-sensing gene network and demonstrate that it behaves as an “on–off” gene expression switch that is robust to molecular noise and that activates the plasmid conjugation program in response to the increase in autoinducer concentration. This intracellular model is then incorporated into an agent-based stochastic population model that also describes bacterial motion, cell division, and chemical communication. Simulating the transition to quorum sensing in a liquid medium and biofilm, we explain the experimentally observed gradual manifestation of the quorum-sensing phenotype by showing that the transition of individual model cells into the “on” state is spread stochastically over a broad range of autoinducer concentrations. At the same time, the population-averaged values of critical autoinducer concentration and the threshold population density are shown to be robust to variability between individual cells, predictable and specific to particular growth conditions. Our modeling approach connects intracellular and population scales of the quorum-sensing phenomenon and provides plausible answers to the long-standing questions regarding the ecological and evolutionary significance of the phenomenon. Thus, we demonstrate that the transition to quorum sensing requires a much higher threshold cell density in liquid medium than in biofilm, and on this basis we hypothesize that in Agrobacterium quorum sensing serves as the detector of biofilm formation.  相似文献   

9.
Inhibition of bacterial quorum sensing by vanilla extract   总被引:2,自引:0,他引:2  
AIMS: The purpose of this study was to search for a novel quorum sensing inhibitor and analyse its inhibitory activity. METHODS AND RESULTS: Quorum sensing inhibition was monitored using the Tn-5 mutant, Chromobacterium violaceum CV026. Vanilla beans (Vanilla planifolia Andrews) were extracted using 75% (v/v) aqueous methanol and added to C. violaceum CV026 cultures. Inhibitory activity was measured by quantifying violacein production using a spectrophotometer. The results have revealed that vanilla extract significantly reduced violacein production in a concentration-dependent manner, indicating inhibition of quorum sensing. CONCLUSIONS: Vanilla, a widely used spice and flavour, can inhibit bacterial quorum sensing. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the intake of vanilla-containing food materials might promote human health by inhibiting quorum sensing and preventing bacterial pathogenesis. Further studies are required to isolate specific substances from vanilla extract acting as quorum sensing inhibitors.  相似文献   

10.
Aims: This study aimed to search for a novel quorum‐sensing inhibitor from some fungi and analyse its inhibitory activity. Methods and Results: Chromobacterium violaceum CV026, a double mini‐Tn5 mutant, was used as an indicator to monitor quorum‐sensing inhibition. Auricularia auricular pigments from fruiting bodies were extracted using hydrochloric acid as an infusion, dissolved in alkaline dimethylsulfoxide (DMSO), sterilized by filtration through a 0·22‐μm membrane filter and added to C. violaceum CV026 cultures. Inhibitory activity was measured by quantifying violacein production using a microplate reader. The results have revealed that the alkaline DMSO‐soluble pigments significantly reduced violacein production in a concentration‐dependent manner, a quorum‐sensing‐regulated behaviour in C. violaceum. Conclusions: Auricularia auricular pigments can inhibit bacterial quorum sensing. Significance and Impact of the Study: The results suggest the bioactive constituents from edible and medicinal fungi could interfere with bacterial quorum‐sensing system, regulate its associate functions and prevent bacterial pathogenesis. Further studies were in process in our laboratory to isolate specific compounds from A. auricular pigments, evaluate them as quorum‐sensing inhibitors and analyse the exact mechanism of action.  相似文献   

11.
Bacterial quorum sensing plays a very important role in the regulation of biofilm formation, virulence, conjugation, sporulation, and swarming mobility. Inhibitors of bacterial quorum sensing are important research tools and potential therapeutic agents. In this paper, we describe for the first time the discovery of several boronic acids as single digit micromolar inhibitors of bacterial quorum sensing in Vibrio harveyi.  相似文献   

12.
【背景】细菌密度感应(Quorum sensing,QS)是指细菌利用分泌的信号分子进行相互交流的现象,而密度感应淬灭(Quorumquenching,QQ)是指通过干扰信号分子的产生、释放、积累或应答从而阻抑密度感应通路。【目的】探究青岛近海沉积物生物被膜中密度感应和密度感应淬灭细菌的多样性。【方法】采用海水培养基2216E从青岛近海沉积物生物被膜中分离获取可培养细菌,采用平板交互划线和高通量筛选的方法分别筛选具有密度感应和密度感应淬灭的菌株。【结果】共分离获得83株共54种具有密度感应和密度感应淬灭的细菌,分属于四大细菌门类:变形菌门、拟杆菌门、厚壁菌门和放线菌门。其中,38株(45.8%)可以产生酰基高丝氨酸内酯(Acyl-homoserine lactone,AHL)类信号分子,它们分属于变形菌门(37株,15种)和拟杆菌门(1株,1种),优势属为弧菌属和鲁杰氏菌属;能够降解AHL类信号分子的有57株(68.7%),在变形菌门(41株,23种)、拟杆菌门(14株,10种)、厚壁菌门(5株,5种)以及放线菌门(1株,1种)中均有分布。【结论】在青岛近海沉积物生物被膜可培养细菌中,具有密度感应和密度感应淬灭现象的菌株具有很高的丰度和多样性,为后续生态学意义的研究与海洋微生物的开发提供了参考。  相似文献   

13.
Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.  相似文献   

14.
Sociomicrobiology: the connections between quorum sensing and biofilms   总被引:30,自引:0,他引:30  
In the past decade, significant debate has surrounded the relative contributions of genetic determinants versus environmental conditions to certain types of human behavior. While this debate goes on, it is with a certain degree of irony that microbiologists studying aspects of bacterial community behavior face the same questions. Information regarding two social phenomena exhibited by bacteria, quorum sensing and biofilm development, is reviewed here. These two topics have been inextricably linked, possibly because biofilms and quorum sensing represent two areas in which microbiologists focus on social aspects of bacteria. We will examine what is known about this linkage and discuss areas that might be developed. In addition, we believe that these two aspects of bacterial behavior represent a small part of the social repertoire of bacteria. Bacteria exhibit many social activities and they represent a model for dissecting social behavior at the genetic level. Therefore, we introduce the term 'sociomicrobiology'.  相似文献   

15.
梁志彬  陈豫梅  陈昱帆  程莹莹  张炼辉 《遗传》2016,38(10):894-901
抗生素耐药性一直是细菌病害防治的难题,药物外排泵过量表达是细菌耐药性形成的重要机制之一。在革兰氏阴性细菌中,RND(Resistance-nodulation-cell division)家族外排泵在耐药性中发挥着重要作用,近年来的研究表明,依赖于小分子信号物质进行调控的群体感应系统与RND外排泵家族之间存在紧密的相互作用关系。本文在介绍RND家族外排泵的结构、转运机理和群体感应系统的类型及调控方式的基础上,剖析了群体感应系统对RND外排泵的调控机理以及RND外排泵对群体感应系统信号分子转运的影响。深入研究RND家族外排泵与群体感应系统之间的相互依赖、相互制约关系有利于阐明RND家族外排泵的调控机理,并有可能为克服微生物耐药性问题提供新的思路。  相似文献   

16.
Bacterial infection of plants often depends on the exchange of quorum sensing signals between nearby bacterial cells. It is now evident that plants, in turn, 'listen' to these bacterial signals and respond in sophisticated ways to the information. Plants also secrete compounds that mimic the bacterial signals and thereby confuse quorum sensing regulation in bacteria.  相似文献   

17.
Quorum sensing is a density-dependent gene regulation mechanism that has been described in many bacterial species in the last decades. Bacteria that use quorum sensing as part of their gene regulation circuits produce molecules called autoinducers that accumulate in the environment and activate target genes in a quorum-dependent way. Some specific clues led us to hypothesize that Bacteroides species can produce autoinducers and possess a quorum sensing system. First, Bacteroides are anaerobic bacteria that are frequently involved in polymicrobial infections. These infections often involve Pseudomonas aeruginosa and Staphylococcus aureus, two of the best understood examples of bacteria that employ quorum sensing systems as part of their pathogenesis. Also, studies have detected the presence of a quorum sensing gene involved in the production of autoinducers in Porphyromonas gingivalis, a species closely related to the Bacteroides genus. These and other evidences prompted us to investigate if Bacteroides strains could produce autoinducer molecules that could be detected by a Vibrio harveyi reporter system. In this paper, we show that supernatants of B. fragilis, B. vulgatus and B. distasonis strains are able to stimulate the V. harveyi quorum sensing system 2. Also, we were able to demonstrate that the stimulation detected is due to the production of autoinducer molecules and not the growth of reporter strains after addition of supernatant. Moreover, the phenomenon observed does not seem to represent the degradation of repressors possibly present in the culture medium used. We could also amplify bands from some of the strains tested using primers designed to the luxS gene of Escherichia coli. Altogether, our results show that B. fragilis, B. vulgatus and B. distasonis (but possibly some other species) can produce V. harveyi autoinducer 2-related molecules. However, the role of such molecules in the biology of these organisms remains unknown.  相似文献   

18.
19.
Higher plants and algae produce compounds that mimic quorum sensing: signals used by bacteria to regulate the expression of many genes and behaviors. Similarly, various bacteria can stimulate, inhibit or inactivate quorum sensing in other bacteria. These discoveries offer new opportunities to manipulate bacterial quorum sensing in applications relevant to medicine, agriculture and the environment.  相似文献   

20.
群体感应系统是一种细胞密度依赖的基因表达系统,其广泛存在于细菌性病原体中,是细菌细胞通讯方式的一种。群体感应系统可利用细菌释放的信号分子不断监控周围细菌的密度。当细菌密度达到阈值时,群体感应系统网络将启动,参与调控生物被膜、细菌毒力等特定基因的表达,从而使临床抗感染治疗失败。而通过抑制群体感应系统,可一定程度上治疗铜绿假单胞菌引起的感染。本文通过查阅近年国内外相关文献,对铜绿假单胞菌群体感应系统研究进展进行总结,为临床铜绿假单胞菌治疗提供新的方向,即群体感应系统抑制剂有可能成为治疗铜绿假单胞菌感染的新策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号