首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this Editorial, I would like to provide our readers with a brief mid-year update about our activities and efforts to bring together researchers working on intercellular signaling proteins at international meetings. The roots emerged about 20 years ago in the discovery of three genes originally designated cyr61, ctgf, and nov. The proteins encoded by these genes were first proposed to constitute a family of proteins (CCN) which now comprises 6 members (CCN1, CCN2, CCN3, CCN4-6) including the wisp proteins. These proteins were recognized to share a striking structural organization and a high degree of identity although they exhibited quite distinct biological properties. After historical considerations regarding the reasons for using the CCN acronym, and how the ICCNS publishing landscape that drove the ICCNS from Cell Communication and Signaling to the Journal of Cell Communication and Signaling, this short update will focus on the 7th edition of the International Workshop on the CCN family of genes to be held in Nice, Oct 16–19, 2013.  相似文献   

2.
In June 2015, Thomson Reuters informed our publisher Springer that the Journal of Cell Communication and Signaling, the official journal of the International CCN Society, « had been selected for coverage in Thomson Reuter’s products and services. Beginning with V. 1 (1) 2007, this publication would be indexed and abstracted in Science Citation Index Expanded (also known as SciSearch), Journal Citation Reports/Science Edition, Biological Abstracts and BIOSIS Previews ». In this fall editorial I briefly revisit a few milestones of the JCCS life since it was first created in 1988, with the deep and genuine willingness to help in the dissemination, in the highly competitive world of publishing, of the best quality science regarding the roles of CCN proteins in signaling.  相似文献   

3.
On behalf of the Journal of Cell Communication and Signaling Editorial board it is my great pleasure to present through this message of peace and love our warmest wishes of health, happiness and professional success. We sincerely hope that 2017 will be a peaceful year worldwide and that solutions will be brought to resolve the great tensions that crystalized last year into terrible acts of violence which reflected the inability of the political powers to bring satisfactory solutions to human dispair and fear. The year 2017 will be the time for celebration of the 10th JCCS anniversary and 9th International Workshop on the CCN family of Genes. Both events should allow us to meet in a productive interactive way. I have had the opportunity to express several times in these columns my deep belief in the power of communication at all levels of human biological and social interactions. Indeed, « Communication is the key » at large.  相似文献   

4.
The Nuts and Bolts section of our Journal (mirrored on the ICCNS society web site), is meant to provide a very practical way to share useful information, that goes beyond the scope of cell signaling and basic CCN protein biology. Considering the number of requests we have had for information related to protection of Intellectual Property (IP), I am pleased to initiate what will be a series of articles that will focus on various IP topics. The inaugural topic is the protection of computer programs. Some colleagues may wonder how and why the patentability of computer programs is a topic of interest for scientists working on CCN proteins . . . As a matter of fact, to assist us in analyzing the potential involvement of CCN3 in human genetic diseases, we considered developing a computer program designed to analyze large amounts of data. Sharing the concepts and the computer program raised concerns regarding IP and protection of the software that we would handle. We believe that many colleagues have encountered similar problems. This article provides a short focus on computer program patentability. It is aimed to provide basic legal information, and to help our readers in understanding the process. It is not intended to replace IP counselors or technology transfer departments. Future articles will address other practical aspects of IP protection.  相似文献   

5.
The CCN family of proteins includes six members presently known as CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. These proteins were originally designated CYR61, CTGF, NOV, and WISP-1, WISP-2, WISP-3. Although these proteins share a significant amount of structural features and a partial identity with other large families of regulatory proteins, they exhibit different biological functions. A critical examination of the progress made over the past two decades, since the first CCN proteins were discovered brings me to the conclusion that most of our present knowledge regarding the functions of these proteins was predicted very early after their discovery. In an effort to point out some of the gaps that prevent us to reach a comprehensive view of the functional interactions between CCN proteins, it is necessary to reconsider carefully data that was already published and put aside, either because the scientific community was not ready to accept them, or because they were not fitting with the « consensus » when they were published. This review article points to avenues that were not attracting the attention that they deserved. However, it is quite obvious that the six members of this unique family of tetra-modular proteins must act in concert, either simultaneously or sequentially, on the same sites or at different times in the life of living organisms. A better understanding of the spatio-temporal regulation of CCN proteins expression requires considering the family as such, not as a set of single proteins related only by their name. As proposed in this review, there is enough convincing pieces of evidence, at the present time, in favor of these proteins playing a role in the coordination of multiple signaling pathways, and constituting a Centralized Communication Network. Deciphering the hierarchy of regulatory circuits involved in this complex system is an important challenge for the near future. In this article, I would like to briefly review the concept of a CCN family of proteins and critically examine the progress made over the past 10 years in the understanding of their biological functions and involvement in both normal and pathological processes.  相似文献   

6.
These essays are part of the sixth yearly presentation of aneducational project of the American Society of Zoologists. Thepurpose is to provide background materials for those who teachthe first-year biology courses in colleges and universities.The Science as a Way of Knowing project emphasizes the conceptualframework of the biological sciences, shows how scientific informationis obtained and validated, and relates science to human concerns.The topic for consideration this year is Cell and MolecularBiology.  相似文献   

7.
This year we’re coming upon the tenth anniversary of our biannual International Workshop on the CCN family of genes. It was during our very first meeting that the International CCN Society was conceived. This editorial provides us with the opportunity to briefly review how the need for a CCN meeting emerged and evolved, following the discovery of CTGF, CYR61, and NOV, the three founding members of the CCN family of proteins that in humans are known as as CCN1 (CTGF), CCN2 (CYR61), CCN3(NOV), CCN4(WISP1), CCN5 (WISP2) and CCN6 (WISP3).  相似文献   

8.
9.
The CCN family of genes currently comprises six secreted proteins (designated CCN1-6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society ( http://ccnsociety.com ), home for an international cadre of collaborators working in the CCN field.  相似文献   

10.
11.
Prior work in the CCN field, including our own, suggested to us that there might be co-regulatory activity and function as part of the actions of this family of cysteine rich cytokines. CCN2 is now regarded as a major pro-fibrotic molecule acting both down-stream and independent of TGF-β1, and appears causal in the disease afflicting multiple organs. Since diabetic renal fibrosis is a common complication of diabetes, and a major cause of end stage renal disease (ESRD), we examined the possibility that CCN3 (NOV), might act as an endogenous negative regulator of CCN2 with the capacity to limit the overproduction of extracellular matrix (ECM), and thus prevent, or ameliorate fibrosis. We demonstrate, using an in vitro model of diabetic renal fibrosis, that both exogenous treatment with CCN3 and transfection with the over-expression of the CCN3 gene in mesangial cells markedly down-regulates CCN2 activity and blocks ECM over-accumulation stimulated by TGF-β1. Conversely, TGF-β1 treatment reduces endogenous CCN3 expression and increases CCN2 activity and matrix accumulation, indicating an important, novel yin/yang effect. Using the db/db mouse model of diabetic nephropathy, we confirm the expression of CCN3 in the kidney, with temporal localization that supports these in vitro findings. In summary, the results corroborate our hypothesis that one function of CCN3 is to regulate CCN2 activity and at the concentrations and conditions used down-regulates the effects of TGF-β1, acting to limit ECM turnover and fibrosis in vivo. The findings suggest opportunities for novel endogenous-based therapy either by the administration, or the upregulation of CCN3.  相似文献   

12.
The CCN family of genes currently comprises six secreted proteins (designated CCN1–6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society (http://ccnsociety.com), home for an international cadre of collaborators working in the CCN field.  相似文献   

13.
I trace how the American Society for Cell Biology became a strong political advocate for the scientific community. I celebrate how good leadership and an effective staff enabled its energetic volunteer organization to have an impact, but I also ask how the effort can be made more successful.Many scientists take for granted that their scientific societies advocate for the well being of their individual members and the health of science. However, advocacy is a relatively recent development that emerged over the past two decades. Advocacy is essential in a democracy because science competes for taxpayer dollars with every other activity supported by the federal government. Advocacy is also important to ensure that lawmakers adopt sensible policies. I review how the American Society for Cell Biology (ASCB) and its allies learned how to fulfill this obligation, and I ask the reader to join the effort. The objective of these advocacy efforts is to influence political decisions through education and information, but the efforts by scientific societies are completely nonpartisan. Support from both political parties is essential to meet our goals.During the 1970s and 1980s biomedical scientists discussed federal funding and public policies that affected our science. Each year the public policy staff of the Federation of Societies of Experimental Biology (FASEB) helped member societies reach a consensus recommendation on the level of federal funding for the biosciences. However, we tended to talk to ourselves because we lacked effective ways to communicate with politicians or the outside world. For the most part we relegated the responsibility for advocacy to medical school deans and presidents of research universities. Their professional associations—the American Association of Medical Colleges (AAMC) and the Association of American Universities (AAU)—generally did a reasonable job of representing the interests of the scientists who worked at their schools.  相似文献   

14.
15.
16.
Connexin43 (Cx43) forms gap junction channels but also serves as a signaling center by binding to proteins via its C‐terminus. We have previously demonstrated that transfection of Cx43 leads to significantly reduced proliferation of placental tumor cells through upregulating and binding of the growth regulator CCN3 (NOV) at the C‐terminus of Cx43. Here, we combined fluorescence resonance energy transfer (FRET), co‐immunoprecipitation and proliferation and expression assays to characterize the interaction complex of Cx43 and CCN3. FRET measurements confirmed the interaction of CCN3 with wild‐type Cx43 (amino acids 1‐382) and with mutants of Cx43 truncated at the C‐terminus resulting in Cx43 proteins of amino acids 1‐374, 1‐273, 1‐264, 1‐257 in 293T cells. These results matched the co‐immunoprecipitation data. Interestingly, although FRET revealed distinct efficiencies in interaction of Cx43 with CCN3 for all deletion constructs only wild‐type Cx43 and one deletion construct (1‐374) led to increased CCN3 expression. Only these interactions which were associated with increased CCN3 expression resulted in a reduced cell proliferation. Our study provides evidence that only defined binding properties between Cx43 and CCN3 leading to an upregulation of CCN3 are needed for signaling. Furthermore, the data obtained by FRET analysis allowed us to model the 3D structure of the C‐terminus of Cx43 interacting with CCN3. J. Cell. Biochem. 110: 129–140, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
WNT1 inducible signaling pathway protein 1 (WISP-1/CCN4) is a novel adipokine, which is upregulated in obesity, and induces a pro-inflammatory response in macrophages in-vitro. Preclinical observations suggested WISP-1/CCN4 as a potential candidate for novel obesity therapy targeting adipose tissue inflammation. Whether circulating levels of WISP-1/CCN4 in humans are altered in obesity and/or type 2 diabetes (T2DM) and in the postprandial state, however, is unknown. This study assessed circulating WISP-1/CCN4 levels in a) paired liquid meal tests and hyperinsulinemic- euglycemic clamps (cohort I, n = 26), b) healthy individuals (cohort II, n = 207) and c) individuals with different stages of obesity and glucose tolerance (cohort III, n = 253). Circulating plasma and serum WISP-1/CCN4 concentrations were measured using a commercially available ELISA. WISP-1/CCN4 levels were not influenced by changes in insulin and/or glucose during the tests. In healthy individuals, WISP-1/CCN4 was detectable in 13% of plasma samples with the intraclass correlation coefficient of 0.93 (95% CI: 0.84–0.96) and in 58.1% of the serum samples in cohort III. Circulating WISP-1/CCN4 positively correlated with body mass index, body fat percentage, leptin and triglyceride levels, hip circumference and fatty liver index. No differences in WISP-1/CCN4 levels between individuals with normal glucose tolerance, impaired glucose tolerance and T2DM were found. The circulating concentrations of WISP-1/CCN4 showed no acute regulation in postprandial state and correlated with anthropometrical obesity markers and lipid profiles. In healthy individuals, WISP-1/CCN4 levels are more often below the detection limit. Thus, serum WISP-1/CCN4 levels may be used as a suitable biomarker of obesity.  相似文献   

18.
19.
Editorial   总被引:1,自引:0,他引:1  
  相似文献   

20.
Cigarette smoke has been demonstrated to induce pulmonary vascular remodeling, which is characterized by medial thickening of the pulmonary arteries mainly resulting from the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the molecular mechanism underlying this process is still unclear. In the present study, we investigated whether CCN2 regulated rat PASMCs (rPASMCs) proliferation induced by cigarette smoke extract (CSE) and nicotine by upregulating cyclin D1 in vitro. CCN2 siRNA or cyclin D1 siRNA were transfected to rPASMCs which were then exposed to CSE and nicotine. Both mRNA and protein expressions of CCN2 were significantly increased in rPASMCs treated with 2% CSE or 1 µM nicotine, which markedly promoted the proliferation of rPASMCs. CCN2 siRNA inhibited the proliferation of rPASMCs induced by CSE or nicotine. Furthermore, CCN2 siRNA markedly suppressed the mRNA and protein expressions of cyclin D1 in rPASMCs and led to cell cycle arrest in G0/G1 phase resulting in reduced rPASMCs proliferation. These findings suggest that CCN2 contributes to the CSE and nicotine‐induced proliferation of rPASMCs at least in part by upregulating cyclin D1 expression. J. Cell. Biochem. 113: 349–359, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号