首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metapopulation dynamics can strongly affect the ecological and evolutionary processes involved in host–parasite interactions. Here, I analyse a deterministic host–parasite coevolutionary model and derive analytic approximations for the level of local adaptation as a function of (1) host migration rate, (2) parasite migration rate, (3) parasite specificity and (4) parasite virulence. This analysis confirms the results of previous simulation studies: the difference between host and parasite migration rates may explain the level of local adaptation of both species. I also show that both higher specificity and higher virulence generally lead to higher levels of local adaptation of the species which is already ahead in the coevolutionary arms race. The present analysis also provides a simple geometric interpretation for local adaptation which captures the complexity of the temporal dynamics of host–parasite coevolution.  相似文献   

2.
A number of ecologically and economically important pathogens exhibit a complex transmission dynamics that involves distinct transmission modes. In this paper, we study the evolutionary dynamics of pathogens for which transmission includes direct host-to-host as well as indirect environmental transmission. Different routes of infection spread require specific adaptations of the parasite, which may result in conflicting selection pressures. Using the framework of Adaptive dynamics, we investigate how these conflicting selection pressures are resolved in the course of evolution and determine the conditions for evolutionary diversification of pathogen strains. We show that evolutionary branching and subsequent evolution of specialist strains occurs in wide parameter regions but evolutionary bistability and evolution of generalist pathogens are possible as well. Our analysis reveals that the relative contributions of direct and environmental transmission, as well as the underlying ecological dynamics, play a crucial role in shaping the course of pathogen evolution. Our findings may explain the coexistence of high and low virulence strains observed in several pathogenic organisms using different transmission modes (e.g., influenza viruses) and highlight the importance of considering ecological dynamics in virulence management.  相似文献   

3.
Hosts are often co‐infected by several parasite genotypes of the same species or even by different species and this is known to affect virulence evolution. However, epidemiological models typically assume that only one of the co‐infecting strains can be transmitted at the same time, which is often at odds with the observed biology. Here, I study the effect of co‐transmission on virulence evolution in a case where parasites compete for host resources. For co‐infections by strains of the same species, increased co‐transmission selects for less virulent strains. This is because co‐transmission aligns the interests of co‐infecting strains, thus decreasing the selective pressure for increased within‐host competitiveness. For co‐infection caused by different parasite species, the evolutionary outcome depends on the respective virulence of the two parasite species. Finally, I investigate asymmetric scenarios, for example that of plant viruses that require “helper” molecules produced by viruses from another species to be transmitted. These results show that even if parasite strains compete for host resources, the prevalence of co‐infections can be a poor predictor of virulence evolution.  相似文献   

4.
For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors—the mode of transmission, and host adaptation in response to parasite evolution—in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence.  相似文献   

5.
When studying how much a parasite harms its host, evolutionary biologists turn to the evolutionary theory of virulence. That theory has been successful in predicting how parasite virulence evolves in response to changes in epidemiological conditions of parasite transmission or to perturbations induced by drug treatments. The evolutionary theory of virulence is, however, nearly silent about the expected differences in virulence between different species of parasite. Why, for example, is anthrax so virulent, whereas closely related bacterial species cause little harm? The evolutionary theory might address such comparisons by analysing differences in tradeoffs between parasite fitness components: transmission as a measure of parasite fecundity, clearance as a measure of parasite lifespan and virulence as another measure that delimits parasite survival within a host. However, even crude quantitative estimates of such tradeoffs remain beyond reach in all but the most controlled of experimental conditions. Here, we argue that the great recent advances in the molecular study of pathogenesis provide a way forward. In light of those mechanistic studies, we analyse the relative sensitivity of tradeoffs between components of parasite fitness. We argue that pathogenic mechanisms that manipulate host immunity or escape from host defences have particularly high sensitivity to parasite fitness and thus dominate as causes of parasite virulence. The high sensitivity of immunomodulation and immune escape arise because those mechanisms affect parasite survival within the host, the most sensitive of fitness components. In our view, relating the sensitivity of pathogenic mechanisms to fitness components will provide a way to build a much richer and more general theory of parasite virulence.  相似文献   

6.
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host–parasite interactions impact the evolution of host–parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.  相似文献   

7.
The adaptive significance of sexual reproduction remains as an unsolved problem in evolutionary biology. One promising hypothesis is that frequency‐dependent selection by parasites selects for sexual reproduction in hosts, but it is unclear whether such selection on hosts would feed back to select for sexual reproduction in parasites. Here we used individual‐based computer simulations to explore this possibility. Specifically, we tracked the dynamics of asexual parasites following their introduction into sexual parasite populations for different combinations of parasite virulence and transmission. Our results suggest that coevolutionary interactions with hosts would generally lead to a stable coexistence between sexual parasites and a single parasite clone. However, if multiple mutations to asexual reproduction were allowed, we found that the interaction led to the accumulation of clonal diversity in the asexual parasite population, which led to the eventual extinction of the sexual parasites. Thus, coevolution with sexual hosts may not be generally sufficient to select for sex in parasites. We then allowed for the stochastic accumulation of mutations in the finite parasite populations (Muller's Ratchet). We found that, for higher levels of parasite virulence and transmission, the population bottlenecks resulting from host–parasite coevolution led to the rapid accumulation of mutations in the clonal parasites and their elimination from the population. This result may explain the observation that sexual reproduction is more common in parasitic animals than in their free‐living relatives.  相似文献   

8.
Zoite migration during infection: parasite adaptation to host defences   总被引:1,自引:0,他引:1  
The apicomplexan parasite Eimeria tenella has evolved a number of strategies for migration into different compartments of the intestinal tissue during its life cycle. These migration events are associated intricately with pathogenesis and are currently of great interest to coccidiologists. Using evidence from in vivo studies and recent work on the dynamics of gut cell turnover, Peter Daszak suggests that E. tenella zoite migration might be viewed as parasite evolutionary adaptation to evade the host innate immune responses (resistance) and deal with the complex, dynamic nature of gut epithelial tissue.  相似文献   

9.
Understanding the effect of multiple infections is essential for the prediction (and eventual control) of virulence evolution. Some theoretical studies have considered the possibility that several strains coexist in the same host (coinfection), but few have taken their within-host dynamics explicitly into account. Here, we develop a nested approach based on a simple model for the interaction of parasite strains with their host's immune system. We study virulence evolution by linking the within-host dynamics to an epidemiological framework that incorporates multiple infections. Our model suggests that antigenically similar parasite strains cannot coexist in the long term inside a host. We also find that the optimal level of virulence increases with the efficiency of multiple infections. Finally, we notice that coinfections create heterogeneity in the host population (with susceptible hosts and infected hosts), which can lead to evolutionary branching in the parasite population and the emergence of a hypervirulent parasite strategy. We interpret this result as a parasite specialization to the infectious state of the hosts. Our study has experimental and theoretical implications in a virulence management perspective.  相似文献   

10.
Virulence in malaria: an evolutionary viewpoint   总被引:10,自引:0,他引:10  
Malaria parasites cause much morbidity and mortality to their human hosts. From our evolutionary perspective, this is because virulence is positively associated with parasite transmission rate. Natural selection therefore drives virulence upwards, but only to the point where the cost to transmission caused by host death begins to outweigh the transmission benefits. In this review, we summarize data from the laboratory rodent malaria model, Plasmodium chabaudi, and field data on the human malaria parasite, P. falciparum, in relation to this virulence trade-off hypothesis. The data from both species show strong positive correlations between asexual multiplication, transmission rate, infection length, morbidity and mortality, and therefore support the underlying assumptions of the hypothesis. Moreover, the P. falciparum data show that expected total lifetime transmission of the parasite is maximized in young children in whom the fitness cost of host mortality balances the fitness benefits of higher transmission rates and slower clearance rates, thus exhibiting the hypothesized virulence trade-off. This evolutionary explanation of virulence appears to accord well with the clinical and molecular explanations of pathogenesis that involve cytoadherence, red cell invasion and immune evasion, although direct evidence of the fitness advantages of these mechanisms is scarce. One implication of this evolutionary view of virulence is that parasite populations are expected to evolve new levels of virulence in response to medical interventions such as vaccines and drugs.  相似文献   

11.
Evolutionary models predict that parasite virulence (parasite-induced host mortality) can evolve as a consequence of natural selection operating on between-host parasite transmission. Two major assumptions are that virulence and transmission are genetically related and that the relative virulence and transmission of parasite genotypes remain similar across host genotypes. We conducted a cross-infection experiment using monarch butterflies and their protozoan parasites from two populations in eastern and western North America. We tested each of 10 host family lines against each of 18 parasite genotypes and measured virulence (host life span) and parasite transmission potential (spore load). Consistent with virulence evolution theory, we found a positive relationship between virulence and transmission across parasite genotypes. However, the absolute values of virulence and transmission differed among host family lines, as did the rank order of parasite clones along the virulence-transmission relationship. Population-level analyses showed that parasites from western North America caused higher infection levels and virulence, but there was no evidence of local adaptation of parasites on sympatric hosts. Collectively, our results suggest that host genotypes can affect the strength and direction of selection on virulence in natural populations, and that predicting virulence evolution may require building genotype-specific interactions into simpler trade-off models.  相似文献   

12.
Antagonistic coevolution between hosts and parasites in spatially structured populations can result in local adaptation of parasites. Traditionally parasite local adaptation has been investigated in field transplant experiments or in the laboratory under a constant environment. Despite the conceptual importance of local adaptation in studies of (co)evolution, to date no study has provided a comparative analysis of these two methods. Here, using information on pathogen population dynamics, I tested local adaptation of the specialist phytopathogen, Podosphaera plantaginis, to its host, Plantago lanceolata at three different spatial scales: sympatric host population, sympatric host metapopulation and allopatric host metapopulations. The experiment was carried out as a field transplant experiment with greenhouse-reared host plants from these three different origins introduced into four pathogen populations. In contrast to results of an earlier study performed with these same host and parasite populations under laboratory conditions, I did not find any evidence for parasite local adaptation. For interactions governed by strain-specific resistance, field studies may not be sensitive enough to detect mean parasite population virulence. Given that parasite transmission potential may be mediated by the abiotic environment and genotype-by-environment interactions, I suggest that relevant environmental variation should be incorporated into laboratory studies of parasite local adaptation.  相似文献   

13.
Parasite transmission modes and the evolution of virulence   总被引:5,自引:0,他引:5  
A mathematical model is presented that explores the relationship between transmission patterns and the evolution of virulence for horizontally transmitted parasites when only a single parasite strain can infect each host. The model is constructed by decomposing parasite transmission into two processes, the rate of contact between hosts and the probability of transmission per contact. These transmission rate components, as well as the total parasite mortality rate, are allowed to vary over the course of an infection. A general evolutionarily stable condition is presented that partitions the effects of virulence on parasite fitness into three components: fecundity benefits, mortality costs, and morbidity costs. This extension of previous theory allows us to explore the evolutionary consequences of a variety of transmission patterns. I then focus attention on a special case in which the parasite density remains approximately constant during an infection, and I demonstrate two important ways in which transmission modes can affect virulence evolution: by imposing different morbidity costs on the parasite and by altering the scheduling of parasite reproduction during an infection. Both are illustrated with examples, including one that examines the hypothesis that vector-borne parasites should be more virulent than non-vector-borne parasites (Ewald 1994). The validity of this hypothesis depends upon the way in which these two effects interact, and it need not hold in general.  相似文献   

14.
Multihost parasites can infect different types of hosts or even different host species. Epidemiological models have shown the importance of the diversity of potential hosts for understanding the dynamics of infectious disease (e.g., the importance of reservoirs), but the consequences of this diversity for virulence and transmission evolution remain largely overlooked. Here, I present a general theoretical framework for the study of life-history evolution of multihost parasites. This analysis highlights the importance of epidemiology (the relative quality and quantity of different types of infected hosts) and between-trait constraints (both within and between different hosts) to parasite evolution. I illustrate these effects in different transmission scenarios under the simplifying assumption that parasites can infect only two types of hosts. These simple but contrasted evolutionary scenarios yield new insights into virulence evolution and the evolution of transmission routes among different hosts. Because many of the pathogens that have large public-health and agricultural impacts have complex life cycles, an understanding of their evolutionary dynamics could hold substantial benefits for management.  相似文献   

15.
Models of virulence evolution generally consider the outcome of competition between resident and mutant parasite strains at or near endemic equilibrium. Less studied is what happens during the initial phases of invasion and adaptation. Understanding initial adaptive dynamics is particularly important in the context of emerging diseases in wildlife and humans, for which rapid and accurate intervention may be of the essence. To address the question of virulence evolution in emerging diseases, we employ a simple stochastic modeling framework. As is intuitive, the pathogen strains most likely to emerge are those with the highest net reproductive rates (R0). We find, however, that stochastic events shape the properties of emerging pathogens in sometimes unexpected ways. First, the mean virulence of emerging pathogens is expected to be larger in dense host populations and/or when transmission is high, due to less restrictive conditions for the spread of the pathogen. Second, a positive correlation between average virulence and transmissibility emerges due to a combination of drift and selection. We conclude that at least in the initial phases of adaptation, special assumptions about constraints need not be invoked to explain some virulence-transmission correlations and that virulence management practices should consider how residual variation in transmission and virulence can be selected to reduce the prevalence and/or virulence of emerging infectious diseases.  相似文献   

16.
This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.  相似文献   

17.
Within‐host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co‐evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain‐specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics.  相似文献   

18.
Most studies of virulence of infection focus on pairwise host–parasite interactions. However, hosts are almost universally co-infected by several parasite strains and/or genotypes of the same or different species. While theory predicts that co-infection favours more virulent parasite genotypes through intensified competition for host resources, knowledge of the effects of genotype by genotype (G × G) interactions between unrelated parasite species on virulence of co-infection is limited. Here, we tested such a relationship by challenging rainbow trout with replicated bacterial strains and fluke genotypes both singly and in all possible pairwise combinations. We found that virulence (host mortality) was higher in co-infections compared with single infections. Importantly, we also found that the overall virulence was dependent on the genetic identity of the co-infecting partners so that the outcome of co-infection could not be predicted from the respective virulence of single infections. Our results imply that G × G interactions among co-infecting parasites may significantly affect host health, add to variance in parasite fitness and thus influence evolutionary dynamics and ecology of disease in unexpected ways.  相似文献   

19.
Environmentally transmitted parasites spend time in the abiotic environment, where they are subjected to a variety of stressors. Learning how they face this challenge is essential if we are to understand how host–parasite interactions may vary across environmental gradients. We used a zooplankton–bacteria host–parasite system where availability of sunlight (solar radiation) influences disease dynamics to look for evidence of parasite local adaptation to sunlight exposure. We also examined how variation in sunlight tolerance among parasite strains impacted host reproduction. Parasite strains collected from clearer lakes (with greater sunlight penetration) were most tolerant of the negative impacts of sunlight exposure, suggesting local adaptation to sunlight conditions. This adaptation came with both a cost and a benefit for parasites: parasite strains from clearer lakes produced relatively fewer transmission stages (spores) but these strains were more infective. After experimental sunlight exposure, the most sunlight-tolerant parasite strains reduced host fecundity just as much as spores that were never exposed to sunlight. Sunlight availability varies greatly among lakes around the world. Our results suggest that the selective pressure sunlight exposure exerts on parasites may impact both parasite and host fitness, potentially driving variation in disease epidemics and host population dynamics across sunlight availability gradients.  相似文献   

20.
Each year, malaria parasites cause more than 500 million infections and 0.5-3 million deaths worldwide, mostly among children under five living in sub-Saharan Africa. In contrast with several viral and bacterial pathogens, which elicit long-lived immunity after a primary infection, these parasites require several years of continuous exposure to confer partial, usually non-sterilizing immune protection. One of the main obstacles to the acquisition of antimalarial immunity is the high degree of antigenic diversity in potential target antigens, which enables parasites to evade immune responses elicited by past exposure to variant forms of the same antigen. Allelic polymorphism, the existence of genetically stable alternative forms of antigen-coding genes, originates from nucleotide replacement mutations and intragenic recombination. In addition, malaria parasites display antigenic variation, whereby a clonal lineage of parasites expresses successively alternate forms of an antigen without changes in genotype. This review focuses on molecular and evolutionary processes that promote allelic polymorphism and antigenic variation in natural malaria parasite populations and their implications for naturally acquired immunity and vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号