首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Equatorial rain forests that maintain a balance between speciation and extinction are hot-spots for studies of biodiversity. Western Ghats in southern India have gained attention due to high tropical biodiversity and endemism in their southern most area. We attempted to track the affinities of the pollen flora of the endemic plants of Western Ghat area within the fossil palynoflora of late Palaeocene-early Eocene (∼55–50 Ma) sedimentary deposits of western and northeastern Indian region. The study shows striking similarity of extant pollen with twenty eight most common fossil pollen taxa of the early Palaeogene. Widespread occurrences of coal and lignite deposits during early Palaeogene provide evidence of existence of well diversified rain forest community and swampy vegetation in the coastal low lying areas all along the western and northeastern margins of the Indian subcontinent. Prevalence of excessive humid climate during this period has been seen as a result of equatorial positioning of Indian subcontinent, superimposed by a long term global warming phase (PETM and EECO) during the early Palaeogene. The study presents clear evidence that highly diversified equatorial rain forest vegetation once widespread in the Indian subcontinent during early Palaeogene times, are now restricted in a small area as a refugia in the southernmost part of the Western Ghat area. High precipitation and shorter periods of dry months seem to have provided suitable environment to sustain lineages of ancient tropical vegetation in this area of Western Ghats in spite of dramatic climatic changes subsequent to the post India-Asia collision and during the Quaternary and Recent times.  相似文献   

2.
Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal''s limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal.  相似文献   

3.
Aim To evaluate the Gunnerus Ridge land‐bridge hypothesis, which postulates a Late Cretaceous causeway between eastern Antarctica and southern Madagascar allowing the passage of terrestrial vertebrates. Location Eastern Antarctica, southern Indian Ocean, Madagascar. Methods The review involves palaeogeographical modelling, which draws upon geological and geophysical data, bathymetric charts, and plate tectonic reconstructions, and the evaluation of stratigraphically calibrated phylogenetic analyses to document ghost lineages of select taxa. Results The available geological and geophysical evidence indicates that eastern Antarctica’s Gunnerus Ridge and southern Madagascar were separated for the entire Late Cretaceous by a vast marine expanse. In the mid–Late Cretaceous, the gap was probably punctuated by land on two intervening physiographical highs, the northern Madagascar Plateau and Conrad Rise, the latter of which, although probably large, was still separated from Antarctica’s Riiser‐Larsen Peninsula by c. 1600 km. Recent, stratigraphically calibrated phylogenies including large, terrestrial end‐Cretaceous vertebrate taxa of Madagascar and the Indian subcontinent reveal long ghost lineages that extended into the Early Cretaceous. Main conclusions The view that Antarctica and Madagascar were connected by a long causeway between the Gunnerus Ridge and southern Madagascar in the Late Cretaceous, and that terrestrial vertebrates were able to colonize new frontiers using this physiographical feature, is almost certainly incorrect, as was previously demonstrated for the purported causeway between Antarctica and the Indian subcontinent across the Kerguelen Plateau. Connection across mainland Africa to account for the close relationships of several fossil and extant vertebrate taxa of Indo‐Madagascar and South America is another option, although this too lacks credibility. We conclude that (1) throughout the Late Cretaceous there was no intervening, continuous causeway through Antarctica and associated land bridges between South America to the west and Indo‐Madagascar to the east; and (2) mid‐ to large‐sized, obligate terrestrial forms (e.g. abelisauroid theropod and titanosaurian sauropod dinosaurs and notosuchian crocodyliforms) gained broad distribution across Gondwanan land masses prior to fragmentation and were isolated on Indo‐Madagascar before the end of the Early Cretaceous.  相似文献   

4.
During the early Eocene (~55–52 Ma), when the Indian subcontinent relished equatorial climatic conditions, lignite was deposited along its north western margin. Lignite mines of northwestern India have proved to be an outstanding resource for palaeoenvironmental information. The Vastan lignite mine of the early Eocene age situated near Surat district (Gujarat) is one of the well-dated and fossiliferous lignite mines in western India. A fossil wood, retrieved from this mine, is systematically described and shows a strong resemblance to the modern genus Chisocheton of the family Meliaceae. Plant fossils are the best source to reconstruct the palaeoenvironment of any region, and here a luxurious, highly diverse tropical evergreen forest is interpreted in and around the fossil locality in contrast to the tropical thorn forest of the present day. This early Eocene highly diverse equatorial forest, once covered a significant portion of the Indian subcontinent, is now restricted in fringes known as Western Ghats in south India attesting to changes in climate.  相似文献   

5.
The Indian palaeoanthropological record, although patchy at the moment, is improving rapidly with every new find. This broad review attempts to provide an account of (a) the Late Miocene fossil apes and their gradual disappearance due to ecological shift from forest dominated to grassland dominated ecosystem around 9-8 Ma ago, (b) the Pliocene immigration/evolution of possible hominids and associated fauna, (c) the Pleistocene record of fossil hominins, associated fauna and artifacts, and (d) the Holocene time of permanent settlements and the genetic data from various human cultural groups within India. Around 13 Ma ago (late Middle Miocene) Siwalik forests saw the emergence of an orangutan-like primate Sivapithecus. By 8 Ma, this genus disappeared from the Siwalik region as its habitat started shrinking due to increased aridity influenced by global cooling and monsoon intensification. A contemporary and a close relative of Sivapithecus, Gigantopithecus (Indopithecus), the largest ape that ever-lived, made its first appearance at around 9 Ma. Other smaller primates that were pene-contemporaneous with these apes were Pliopithecus (Dendropithecus), Indraloris, Sivaladapis and Palaeotupia. The Late Pliocene and Early Pleistocene witnessed northern hemisphere glaciations, followed by the spread of arid conditions on a global scale, setting the stage for hominids to explore “Savanahastan”. With the prominent expansion of grassland environments from East Africa to China and Indonesia in the Pliocene, monkeys and baboons dispersed into the Indian subcontinent from Africa along with other mammals. Though debated, there are several claims of the presence of early hominins in this part of the world during the Late Pliocene, based primarily on the recovery of Palaeolithic tools. Fossils of our own ancestor and one of the first globe-trotters, early Homo erectus, has been documented from the Early Pleistocene of East Africa, Western Asia and Southeast Asia, thus indirectly pointing towards Indian subcontinent as a possible migration corridor between these regions. The only definite pre-Homo sapiens fossil hominin remains come from the Central Narmada Valley and are thought to be of Middle to late Pleistocene age, and the cranium has been shown to be closely linked to archaic Homo sapiens/H. heidelbergensis of Europe. Around ∼74,000 yrs ago, a super volcanic eruption in Sumatra caused the deposition of Youngest Toba Tephra, that covered large parts of the Indian peninsula. Just around this time anatomically-and-behaviorally modern humans or Homo sapiens possibly arrived into India as evidenced by the so called Middle and Upper Palaeolithic assemblages and associated symbolic evidence. The available genetic data reveals that the gene pool to which modern Indians races belong was extremely diverse and had variable mixed links with both European and Asian populations.  相似文献   

6.
Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the ‘Gondwanan vicariance’ scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group.  相似文献   

7.
Certain palaeoecological criteria in the reconstruction of the Palaeogene palaeobiogeography of the Indian subcontinent are discussed. The Early Palaeogene is characterised by marine oscillations, a prolific invertebrate fauna, extensive coal facies development and outpouring of basaltic lava flows, the last being a feature connected with the movement of the Indian Plate and coinciding with a Himalayan orogenic impulse. The Middle Eocene transgression marks the transition of marine sedimentation to fluvial conditions in northern India with the presence of a fairly diverse mammalian fauna in northwestern Pakistan and northern India. During the Late Oligocene, mammals clearly ancestral to the much more prolific Siwalik fauna were present in western Pakistan, northeastern India and southcentral Burma.The flora consists of mainly tropical to subtropical families with the addition of some temperate elements in Assam in the latter half of the Eocene and Oligocene. Invertebrates indicate a close affinity between the western and eastern sectors and suggest that the sea was continuous in the north at least up to the Palaeocene. With the emergence of land in the northeastern part of the subcontinent, the fauna of Assam acquired distinct Indo-Pacific elements similar to those of Burma and the Indonesian Arc. Later, the sea was divided into two gulfs which gradually shrank towards the end of the Palaeogene and disappeared by the Middle Miocene.  相似文献   

8.
9.
Northeast India, the only region which currently forms a land bridge between the Indian subcontinent and Southeast Asia, has been proposed as an important corridor for the initial peopling of East Asia. Given that the Austro-Asiatic linguistic family is considered to be the oldest and spoken by certain tribes in India, Northeast India and entire Southeast Asia, we expect that populations of this family from Northeast India should provide the signatures of genetic link between Indian and Southeast Asian populations. In order to test this hypothesis, we analyzed mtDNA and Y-Chromosome SNP and STR data of the eight groups of the Austro-Asiatic Khasi from Northeast India and the neighboring Garo and compared with that of other relevant Asian populations. The results suggest that the Austro-Asiatic Khasi tribes of Northeast India represent a genetic continuity between the populations of South and Southeast Asia, thereby advocating that northeast India could have been a major corridor for the movement of populations from India to East/Southeast Asia.  相似文献   

10.
The Indian subcontinent has an origin geologically different from Eurasia, but many terrestrial animal and plant species on it have congeneric or sister species in other parts of Asia, especially in the Southeast. This faunal and floral similarity between India and Southeast Asia is explained by either of the two biogeographic scenarios, ‘into-India’ or ‘out-of-India’. Phylogenies based on complete mitochondrial genomes and five nuclear genes were undertaken for ricefishes (Adrianichthyidae) to examine which of these two biogeographic scenarios fits better. We found that Oryzias setnai, the only adrianichthyid distributed in and endemic to the Western Ghats, a mountain range running parallel to the western coast of the Indian subcontinent, is sister to all other adrianichthyids from eastern India and Southeast–East Asia. Divergence time estimates and ancestral area reconstructions reveal that this western Indian species diverged in the late Mesozoic during the northward drift of the Indian subcontinent. These findings indicate that adrianichthyids dispersed eastward ‘out-of-India’ after the collision of the Indian subcontinent with Eurasia, and subsequently diversified in Southeast–East Asia. A review of geographic distributions of ‘out-of-India’ taxa reveals that they may have largely fuelled or modified the biodiversity of Eurasia.  相似文献   

11.
Parallel clines for starvation resistance and lipid content are well documented among drosophilids on the Indian subcontinent. However, the mechanistic basis of these clines has not been investigated so far. Here, we investigate the utilization of lipids during starvation as a function of duration of stress in D. ananassae. We found higher lipid content responsible for high starvation resistance at lower latitudes. Lipids were utilized during starvation only; not during any other climatic stresses like desiccation or thermal stresses. We also found a cline for consumption of total body lipids; as more content (out of total amount of lipids) was utilized by flies at lower latitudes and lesser at higher latitudes. But, there was no latitudinal cline for threshold lipid amount in the case of females while for males there was a positive cline. Lastly, parallel clines have evolved under contrasting climatic conditions i.e. drier and colder northern localities have flies with lower lipid and reduced starvation resistance while hot and humid localities favor flies with higher lipid levels and greater starvation tolerance. Thus, the evolution of clines associated with starvation and lipid content might have resulted due to specific ecological conditions i.e. humidity gradient on the Indian subcontinent.  相似文献   

12.
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter??s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.  相似文献   

13.
The northeast Indian passageway connecting the Indian subcontinent to East/Southeast Asia is thought to have been a major corridor for human migrations. Because it is also an important linguistic contact zone, it is predicted that northeast India has witnessed extensive population interactions, thus, leading to high genetic diversity within groups and heterogeneity among groups. To test this prediction, we analyzed 14 biallelic and five short tandem-repeat Y-chromosome markers and hypervariable region 1 mtDNA sequence variation in 192 northeast Indians. We find that both northeast Indian Y chromosomes and mtDNAs consistently show strikingly high homogeneity among groups and strong affinities to East Asian groups. We detect virtually no Y-chromosome and mtDNA admixture between northeast and other Indian groups. Northeast Indian groups are also characterized by a greatly reduced Y-chromosome diversity, which contrasts with extensive mtDNA diversity. This is best explained by a male founder effect during the colonization of northeast India that is estimated to have occurred within the past 4,000 years. Thus, contrary to the prediction, these results provide strong evidence for a genetic discontinuity between northeast Indian groups and other Indian groups. We, therefore, conclude that the northeast Indian passage way acted as a geographic barrier rather than as a corridor for human migrations between the Indian subcontinent and East/Southeast Asia, at least within the past millennia and possibly for several tens of thousand years, as suggested by the overall distinctiveness of the Indian and East Asian Y chromosome and mtDNA gene pools.  相似文献   

14.
Biomineralized skeletons are widespread in animals, and their origins can be traced to the latest Ediacaran or early Cambrian fossil record, in virtually all animal groups. The origin of animal skeletons is inextricably linked with the diversification of animal body plans and the dramatic changes in ecology and geosphere–biosphere interactions across the Ediacaran–Cambrian transition. This apparent independent acquisition of skeletons across diverse animal clades has been proposed to have been driven by co‐option of a conserved ancestral genetic toolkit in different lineages at the same time. This ‘biomineralization toolkit’ hypothesis makes predictions of the early evolution of the skeleton, predictions tested herein through a critical review of the evidence from both the fossil record and development of skeletons in extant organisms. Furthermore, the distribution of skeletons is here plotted against a time‐calibrated animal phylogeny, and the nature of the deep ancestors of biomineralizing animals interpolated using ancestral state reconstruction. All these lines of evidence point towards multiple instances of the evolution of biomineralization through the co‐option of an inherited organic skeleton and genetic toolkit followed by the stepwise acquisition of more complex skeletal tissues under tighter biological control. This not only supports the ‘biomineralization toolkit’ hypothesis but also provides a model for describing the evolution of complex biological systems across the Ediacaran–Cambrian transition.  相似文献   

15.
Cetaceans (whales, dolphins, and porpoises) are an order of mammals that originated about 50 million years ago in the Eocene epoch. Even though all modern cetaceans are obligate aquatic mammals, early cetaceans were amphibious, and their ancestors were terrestrial artiodactyls, similar to small deer. The transition from land to water is documented by a series of intermediate fossils, many of which are known from India and Pakistan. We review raoellid artiodactyls, as well as the earliest families of cetaceans: pakicetids, ambulocetids, remingtonocetids, protocetids, and basilosaurids. We focus on the evolution of cetacean organ systems, as these document the transition from land to water in detail.  相似文献   

16.
Abstract: A new fossil osteoglossid fish, Taverneichthys bikanericus gen. et sp. nov. and an unnamed but probable new species of ?Lepisosteus (Lepisosteidae) are described from the subsurface beds of the Palana (lignite) Formation near Bikaner, western Rajasthan, India. T. bikanericus is founded on a skull, which is the first osteoglossid skull from the Indian subcontinent, whereas ?Lepisosteus sp. is represented by a part of its trunk covered with ganoid scales. The taxonomic assignment of the latter specimen to gars is based on the micro‐ and ultrastructure of its scales. Taverneichthys is included in the Osteoglossinae because it shares at least three of the seven diagnostic characters of the subfamily: (1) jaw articulation behind the vertical midline of orbit, (2) palatine and ectopterygoid fused to form palato‐ectopterygoid, and (3) horizontal arm of preopercle short, ending anteriorly behind orbit (inferred). It is characterized by a considerably larger dermethmoid bone and the two nasals that are in contact with each other behind it separating this bone from the frontals. In this respect it is more evolved than Cretophareodus and Phareodus, and closer to Brychaetus, Musperia, Opsithrissops and modern osteoglossids. The fossils documented herein are the first vertebrate remains from the Palana Formation. They were recovered from a highly indurated greyish‐black calcareous shale approximately 90 m below ground level from a dug‐well section. The occurrence of fossil remains of osteoglossid and lepisosteid fish in the Palana Formation, both of which are among the major predators of a terrestrial aquatic community, and their association with the crocodilian remains, are indicative of the mature and diverse nature of the Palana vertebrate community. It postulates the recovery of a varied assemblage of vertebrates, especially fish and crocodilians and possibly also mammals. The association of osteoglossid and lepisosteid fish characterizes a dominantly freshwater deposit and is consistent with a Paleocene age for the Palana Formation. The known distribution of fossil and living osteoglossid and lepisosteid fish suggests a marked shift in their climatic adaptability in time and space. Their close association in the fossil record, especially in the Indian subcontinent, is well documented, but today they thrive in different climatic zones.  相似文献   

17.
Summary English, Italian (including Sardinian), and Spanish populations from Europe and Muslim, Hindu, Sikh, Punjabi, and other populations from the Indian subcontinent currently living either in Birmingham or in India were screened for electrophoretically detectable genetic variants of red cell glyoxalase I (GLO), and their frequencies were reported. All the western European populations investigated, including those reported, exhibited an incidence of close to 44% for the GLO 1 gene. The frequency distribution of the GLO 1 gene in various populations from the Indian subcontinent, in contrast, was found to range between 0.15 and 0.33. These observations suggest that the European populations in general are genetically more homogeneous than are the populations of the Indian subcontinent.  相似文献   

18.
Lawrence J. Flynn 《Geobios》1982,15(4):583-588
Based on the biochronology of rhizomyid rodents of Northern Pakistan, fossil horizons in the Siwaliks of Northern India can be correlated to the late Neogene sequence of Pakistan with greater precision than previously possible. The indian Siwaliks do not include records of the most primitive Rhizomyidae, but rhizomyid faunas of India display strong affinity with those of Pakistan in the late Miocene. Pliocene differentiation of rhizomyid faunas in India and Pakistan may reflect ecological partitioning within the Indian subcontinent. Use of the term «Nagri for deposits at Haritalyangar suggests an erroneous equivalence in age to the Nagri stratotype in Pakistan.  相似文献   

19.
This book, aimed at undergraduates, deals mostly with the informationthat can be gleaned about plant evolution from the fossil record.In some sense, its broad title is slightly misleading becauseother topics central to plant evolution such as genetic changein populations and mechanisms of speciation are hardly covered.After a brief introduction to the geological timescale, typesof fossil and how they are dated, the central six chapters formingthe bulk of the book follow a chronological journey. This takesthe reader from the appearance of the first photosynthesizers,to the colonization of the land, through to the evolution anddominance of  相似文献   

20.
Studies focused upon the evolutionary transition from ancestral green algae to the earliest land plants are important from a range of ecological, molecular and evolutionary perspectives. A substantial suite of ultrastructural, biochemical and molecular data supports the concept that land plants (embryophytes) are monophyletically derived from an ancestral charophycean alga. However, the details of phylogenetic branching patterns linking extant charophytes and seedless embryophytes are currently unclear. Moreover, the fossil record has so far been mute regarding the algae-land plant transition. Nevertheless, an accurate reflection of major evolutionary events in the history of the earliest land plants can be obtained by comparative paleontological-neontological studies, and comparative molecular, cellular and developmental investigations of extant charophytes and bryophytes. This review focuses upon research progress toward understanding three clade-specific adaptations that were important in the successful colonization of land by plants: the histogenetic apical meristem, the matrotrophic embryo, and decay-resistant cell wall polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号