首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A somatic cell mutant (Mev-1) auxotrophic for mevalonate by virtue of a complete lack of detectable 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase activity has been shown to demonstrate a requirement for a non-sterol mevalonate-derived product for regulation of synthesis of HMG-CoA reductase. A comparison of the effects of 25-hydroxycholesterol and the combination of 25-hydroxycholesterol and mevalonate on HMG-CoA reductase activity, synthesis, and mRNA levels in Mev-1 is presented in this report. The results show a close correlation between activity, rate of synthesis, and mRNA levels for Mev-1 cells treated with 25-hydroxycholesterol alone. Under the conditions of these experiments these effects are relatively small (approximately a 4-fold decrease). A much larger inhibition of HMG-CoA reductase activity and rate of synthesis (approximately 50-fold) is observed upon treatment of Mev-1 cells with a combination of 25-hydroxycholesterol and mevalonate. Yet, under these conditions mRNA levels are still reduced by only a factor of 4. These results are interpreted to suggest that the non-sterol mevalonate-derived regulatory product of HMG-CoA reductase acts by a translational control mechanism.  相似文献   

2.
24S,25-Epoxycholesterol is formed in a shunt of the mevalonate pathway that produces cholesterol. It is one of the most potent known activators of the liver X receptors and can inhibit sterol regulatory element-binding protein processing. Until recently analysis of 24S,25-epoxycholesterol at high sensitivity has been precluded by its thermal lability and lack of a strong chromophore. Here we report on the analysis of 24S,25-epoxycholesterol in rodent brain where its level was determined to be of the order of 0.4–1.4 μg/g wet weight in both adult mouse and rat. For comparison the level of 24S-hydroxycholesterol in brain of both rodents was of the order of 20 μg/g, while that of cholesterol in mouse was 10–20 mg/g. By exploiting knockout mice for the enzyme oxysterol 7α-hydroxylase (Cyp7b1) we show that this enzymes is important for the subsequent metabolism of the 24S,25-epoxide.  相似文献   

3.
The oxysterol 24(S),25-epoxycholesterol is made in a shunt in the cholesterol biosynthetic pathway in all cholesterogenic cells. Evidence is emerging that endogenous 24(S),25-epoxycholesterol can work at several levels to control acute cholesterol homeostasis. For instance, this oxysterol suppresses activation of the master regulators of cholesterol homeostasis, the sterol regulatory element binding proteins. Indeed, 24(S),25-epoxycholesterol appears to serve as a measure of cholesterol synthesis and to protect against surges in the production of this potentially cytotoxic molecule. In addition, endogenous 24(S),25-epoxycholesterol is a natural ligand for the liver X receptors which induce expression of cholesterol efflux-related genes. Levels of endogenous 24(S),25-epoxycholesterol can be artificially elevated by partially inhibiting the step after the start of the shunt, catalysed by oxidosqualene cyclase. The idea of manipulating a self-governing pathway for the production of a physiological regulator, that can enhance cholesterol removal and decrease uptake and synthesis, is attractive and warrants further evaluation.  相似文献   

4.
In view of the potential importance of 24,25-epoxysterols as intracellular regulators of 3-hydroxy-3-methylglutaryl-CoA reductase, the C-24 epimers of 24,25-oxidolanosterol and 24,25-epoxycholesterol were tested for their biological activity and metabolism in cell cultures. All four compounds produced repression of the reductase in cultured mouse fibroblasts (L cells), and both 24(S)- and 24(R),25-epoxycholesterol exhibited high affinity binding to the cytosolic oxysterol-binding protein. However, binding of the epimeric 24,25-oxidolanosterols was not detected. 24(S),25-Epoxycholesterol was not rapidly metabolized in either L cells or Chinese hamster lung (Dede) cells. 24(S),25-Oxidolanosterol was rapidly converted to 24(S),25-epoxycholesterol in both cell lines. 24(R),25-Oxidolanosterol was converted to 24(R)-hydroxycholesterol in Dede cells, but was converted instead to 24(R),25-epoxycholesterol in L cells, which lack sterol delta 24-reductase activity. Although 24(S),25-oxidolanosterol does not appear to accumulate in these cell cultures, it was found in human liver in about one-fifth the amount of 24(S),25-epoxycholesterol. 24(R),25-Epoxycholesterol was also converted to 24(R)-hydroxycholesterol in Dede cells, but not in L cells. Triparanol inhibited the reduction of the 24(R),25-epoxides in Dede cells, consistent with the idea that this reaction is catalyzed by the delta 24-reductase. 24(R)-Hydroxycholesterol and its 24(S) epimer exhibited affinity for the binding protein and repressed 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

5.
In a previous publication (Saucier, S.E., A.A., Taylor, F.R., Spencer, T.A., Phirwa, S., and Gayen, A.K., J. Biol. Chem. (1985) 260, 14571-14579), we demonstrated that cultured Chinese hamster lung (Dede) cells contain 24(S),25-epoxycholesterol and 25-hydroxycholesterol in cellular concentrations within the range required to repress 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. In this paper, we show that the addition to the culture medium of a concentration of mevalonate high enough to repress the reductase by 90% resulted in the appearance of two new regulatory oxysterols. The two new sterols are believed to be 32-oxolanosterol and 32-hydroxylanosterol on the basis of high performance liquid chromatography (HPLC) retention times and mass spectrometric and nuclear magnetic resonance spectroscopic data and by NaBH4 reduction of the putative aldehyde to material which had the HPLC retention time of the putative alcohol. The cellular concentrations of 24(S),25-epoxycholesterol and 25-hydroxycholesterol were not significantly changed by the presence of mevalonate. However, there was approximately a 30% increase in total HMG-CoA reductase repressor units which can be ascribed to the 32-oxolanosterol and 32-hydroxylanosterol, where 1 unit equals the repressor activity of 1 ng of 25-hydroxycholesterol. These results support the idea that the level of HMG-CoA reductase activity in growing cell cultures is determined by intracellular oxysterol metabolites and that relatively small changes in their numbers or concentrations can alter the level of HMG-CoA reductase activity.  相似文献   

6.
7.
Previously we showed that 24(S),25-epoxycholesterol is formed from acetate, via squalene 2,3(S),22(S),23-dioxide and 24(S),25-oxidolanosterol, during the normal course of cholesterol biosynthesis in S10 rat liver homogenate (Nelson, J. A., Steckbeck, S. R., and Spencer, T. A. (1981) J. Biol. Chem. 256, 1067-1068; Nelson, J. A., Steckbeck, S. R., and Spencer, T. A. (1981) J. Am. Chem. Soc. 103, 6974-6975). Herein we demonstrate that the nonsaponifiable extract from human liver tissue contains 24(S),25-epoxycholesterol in an amount approximately 10(-3) relative to cholesterol. We show that 24(S),25-epoxycholesterol, like many other oxygenated sterols, represses hydroxymethylglutaryl-CoA reductase activity in cultured cells and binds to the cytosolic oxysterol-binding protein. Furthermore, we show that this epoxide is not rapidly metabolized in cultured cells. These results suggest that 24(S),25-epoxycholesterol may participate in the regulation of hepatic cholesterol metabolism in vivo.  相似文献   

8.
9.
Oxysterols are oxidised forms of cholesterol or its precursors. In this study we utilised the cholesterol 24-hydroxylase knockout mouse (Cyp46a1−/−) to study the sterol and oxysterol content of brain. Despite a great reduction in the abundance of 24S-hydroxycholesterol, the dominant metabolite of cholesterol in wild type brain, no other cholesterol metabolite was found to quantitatively replace this oxysterol in the Cyp46a1−/− mouse. Only minor amounts of other side-chain oxysterols including 22R-, 24R-, 25- and (25R),26-hydroxycholesterols were detected. In line with earlier studies, levels of cholesterol were similar in Cyp46a1−/− and wild type animals. However, the level of the cholesterol precursor, desomsterol, and its parallel metabolite formed via a shut of the mevalonate pathway, 24S,25-epoxycholesterol, were reduced in the Cyp46a1−/− mouse. The reduction in abundance of 24S,25-epoxycholesterol is interesting in light of a recent report indicating that this oxysterol promotes dopaminergic neurogenesis.  相似文献   

10.
A somatic cell mutant of the Chinese hamster ovary (CHO)-K1 cell auxotrophic for mevalonic acid has been isolated by means of the bromodeoxyuridine-visible light technique. This mutant can incorporate labeled mevalonate but not labeled acetate into cholesterol and, thus, is apparently defective in mevalonate biosynthesis. The mutant is recessive with respect to the parental cell phenotype. Assessment of the in vitro activities of the enzymes responsible for mevalonate biosynthesis under varying growth conditions indicates that the mutant, Mev-1, is defective in 3-hydroxy-3-methylglutaryl coenzyme A synthase.  相似文献   

11.
Biosynthetically tritiated sterols from Chinese hamster lung (Dede) cells were fractionated by high performance liquid chromatography, and fractions were assayed for their ability to repress 3-hydroxy-3-methylglutaryl-CoA reductase in L cell cultures. Most of the activity found was associated with two oxysterols, 24(S),25-epoxycholesterol and 25-hydroxycholesterol. The identities of the two sterols were established by co-chromatography with authentic samples and by isotopic dilution and recrystallization. Only low levels of repressor activity were found in other fractions of the sterol extract. The endogenous concentrations of 24(S),25-epoxycholesterol (7.2 fg/cell) and 25-hydroxycholesterol (1.5 fg/cell) appear to be within the ranges required for the regulation of HMG-CoA reductase.  相似文献   

12.
Cholesterol is an essential component of the CNS and its metabolism in the brain has been implicated in various neurodegenerative diseases. The oxysterol produced from cholesterol, 24( S )-hydroxycholesterol, is known to be an important regulator of brain cholesterol homeostasis. In this study, we focussed on another oxysterol, 24( S ),25-epoxycholesterol (24,25EC), which has not been studied before in a neurological context. 24,25EC is unique in that it is synthesized in a shunt in the mevalonate pathway, parallel to cholesterol and utilizing the same enzymes. Considering that all the cholesterol present in the brain is derived from de novo synthesis, we investigated whether or not primary human neurons and astrocytes can produce 24,25EC. We found that astrocytes produced more 24,25EC than neurons under basal conditions, but both cell types had the capacity to synthesize this oxysterol when the enzyme 2,3-oxidosqualene cyclase was partially inhibited. Furthermore, both added 24,25EC and stimulated cellular production of 24,25EC (by partial inhibition of 2,3-oxidosqualene cyclase) modulated expression of key cholesterol-homeostatic genes regulated by the liver X receptor and the sterol regulatory element-binding protein-2. Moreover, we found that 24,25EC synthesized in astrocytes can be taken up by neurons and exert downstream effects on gene regulation. In summary, we have identified 24,25EC as a novel neurosterol which plays a likely role in brain cholesterol homeostasis.  相似文献   

13.
Unesterified cholesterol is a major component of plasma membranes. In the brain of the adult, it is mostly found in myelin sheaths, where it plays a major architectural role. In the newborn mouse, little myelination of neurons has occurred, and much of this sterol comprises a metabolically active pool. In the current study, we have accessed this metabolically active pool and, using LC/MS, have identified cholesterol precursors and metabolites. Although desmosterol and 24S-hydroxycholesterol represent the major precursor and metabolite, respectively, other steroids, including the oxysterols 22-oxocholesterol, 22R-hydroxycholesterol, 20R,22R-dihydroxycholesterol, and the C21-neurosteroid progesterone, were identified. 24S,25-epoxycholesterol formed in parallel to cholesterol was also found to be a major sterol in newborn brain. Like 24S- and 22R-hydroxycholesterols, and also desmosterol, 24S,25-epoxycholesterol is a ligand to the liver X receptors, which are expressed in brain. The desmosterol metabolites (24Z),26-, (24E),26-, and 7α-hydroxydesmosterol were identified in brain for the first time  相似文献   

14.
Li D  Spencer TA 《Steroids》2000,65(9):529-535
7alpha-Hydroxy derivatives of oxysterols are of considerable interest because of their possible involvement in regulation of cholesterol metabolism. This paper describes stereoselective syntheses and complete characterization of the 7alpha-hydroxy derivatives of four key oxysterols: 25-hydroxycholesterol, 27-hydroxycholesterol, 24(S)-hydroxycholesterol, and 24(S), 25-epoxycholesterol.  相似文献   

15.
Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-[2-(diethylamino)-ethoxy]androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy[3H]anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase (Saucier et al. 1985. J. Biol. Chem. 260: 14571-14579). In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. U18666A had the unusual effect of potentiating the inhibitory effect of 25-hydroxylanostene-3-one but did not influence the effect of other oxylanosterols. All the oxylanosterols, with the exception of 25-hydroxylanostene-3-one, enhanced intracellular esterification of cholesterol. The foregoing observations support consideration of oxylanosterols as playing an important role in the biological formation of regulatory oxysterols that modulate sterol biosynthesis at the level of HMG-CoA reductase.  相似文献   

16.
Isoprenylation is required for the processing of the lamin A precursor   总被引:18,自引:5,他引:13       下载免费PDF全文
The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina-associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in human and hamster cells. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevinolin (lovastatin) specifically depletes endogenous isoprenoid pools and inhibits the conversion of prelamin A to lamin A. Prelamin A processing is also blocked by mevalonate starvation of Mev-1, a CHO cell line auxotrophic for mevalonate. Moreover, inhibition of prelamin A processing by mevinolin treatment is rapidly reversed by the addition of exogenous mevalonate. Processing of prelamin A is, therefore, dependent on isoprenoid metabolism. Analysis of the conversion of prelamin A to lamin A by two independent methods, immunoprecipitation and two-dimensional nonequilibrium pH gel electrophoresis, demonstrates that a precursor-product relationship exists between prelamin A and lamin A. Analysis of R,S-[5-3H(N)]mevalonate-labeled cells shows that the rate of turnover of the isoprenoid group from prelamin A is comparable to the rate of conversion of prelamin A to lamin A. These results suggest that during the proteolytic maturation of prelamin A, the isoprenylated moiety is lost. A significant difference between prelamin A processing, and that of p21ras and the B-type lamins that undergo isoprenylation-dependent proteolytic maturation, is that the mature form of lamin A is no longer isoprenylated.  相似文献   

17.
Liver X receptor (LXR) activation represents a mechanism to prevent macrophage foam cell formation. Previously, we demonstrated that partial inhibition of oxidosqualene:lanosterol cyclase (OSC) stimulated synthesis of the LXR agonist 24(S),25-epoxycholesterol (24(S),25-epoxy) and enhanced ABCA1-mediated cholesterol efflux. In contrast to a synthetic, nonsteroidal LXR activator, TO-901317, triglyceride accumulation was not observed. In the present study, we determined whether endogenous 24(S),25-epoxy synthesis selectively enhanced expression of macrophage LXR-regulated cholesterol efflux genes but not genes that regulate fatty acid metabolism. THP-1 human macrophages incubated with the OSC inhibitor (OSCi) RO0714565 (15 nM) significantly reduced cholesterol synthesis and maximized synthesis of 24(S),25-epoxy. Endogenous 24(S),25-epoxy increased ABCA1, ABCG1, and APOE mRNA abundance and consequently increased cholesterol efflux to apoAI. In contrast, OSCi had no effect on LXR-regulated genes LPL (lipoprotein lipase) and FAS (fatty acid synthase). TO-901317 (>or=10 nM) significantly enhanced expression of all genes examined. OSCi and TO-901317 increased the mRNA and precursor form of SREBP-1c, a major regulator of fatty acid and triglyceride synthesis. However, conversion of the precursor to the active form (nSREBP-1c) was blocked by OSCi-induced 24(S),25-epoxy but not by TO-901317 (>or=10 nm), which instead markedly increased nSREBP-1c. Disruption of nSREBP-1c formation by 24(S),25-epoxy accounted for diminished FAS and LPL expression. In summary, endogenous synthesis of 24(S),25-epoxy selectively up-regulates expression of macrophage LXR-regulated cholesterol efflux genes without stimulating genes linked to fatty acid and triglyceride synthesis.  相似文献   

18.
The nuclear receptors liver X receptor alpha (LXRalpha) (NR1H3) and LXRbeta (NR1H2) are important regulators of genes involved in lipid metabolism, including ABCA1, ABCG1, and sterol regulatory element-binding protein-1c (SREBP-1c). Although it has been demonstrated that oxysterols are LXR ligands, little is known about the identity of the physiological activators of these receptors. Here we confirm earlier studies demonstrating a dose-dependent induction of ABCA1 and ABCG1 in human monocyte-derived macrophages by cholesterol loading. In addition, we show that formation of 27-hydroxycholesterol and cholestenoic acid, products of CYP27 action on cholesterol, is dependent on the dose of cholesterol used to load the cells. Other proposed LXR ligands, including 20(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 24(S),25-epoxycholesterol, could not be detected under these conditions. A role for CYP27 in regulation of cholesterol-induced genes was demonstrated by the following findings. 1) Introduction of CYP27 into HEK-293 cells conferred an induction of ABCG1 and SREBP-1c; 2) upon cholesterol loading, CYP27-expressing cells induce these genes to a greater extent than in control cells; 3) in CYP27-deficient human skin fibroblasts, the induction of ABCA1 in response to cholesterol loading was ablated; and 4) in a coactivator association assay, 27-hydroxycholesterol functionally activated LXR. We conclude that 27-hydroxylation of cholesterol is an important pathway for LXR activation in response to cholesterol overload.  相似文献   

19.
Kinetic studies on the cyclization of 2,3(S)-oxido and 2,3(S):22(S),23-dioxido[14C]squalene catalyzed by liver oxidosqualene-lanosterol cyclase revealed a specificity (in terms of V/Km) of the enzyme for the diepoxide. The specificity ratio was dependent on the enzyme preparation, i.e. purified or microsomal, and was highest (about 5) with the microsomal enzyme in the presence of supernatant protein factors. These results explain why, in the presence of cyclase inhibitors, the squalene epoxides can be channeled into a cholesterol biosynthesis regulatory pathway via 24(S),25-epoxylanosterol and 24(S),25-epoxycholesterol.  相似文献   

20.
A novel series of hexafluorocarbinols were discovered as potent activators of the liver X receptor-alpha using a fluorescence polarization assay. Structure-activity relationship study led to the identification of compounds that are more potent agonists than the endogenous ligand, 24(S), 25-epoxycholesterol, with similar efficacy. Several compounds, including T0901317, were shown to have desirable pharmacokinetic profiles suitable for in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号