首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The effect of 2-deoxy-d-glucose and cycloheximide on the synthesis and secretion of the cell-wall constituents protein and mannan in yeast protoplasts was examined in detail. Although the 2-deoxy-d-glucose hardly influenced protein synthesis, a significant parallel inhibition of carbohydrate and protein secretion into the medium was observed. The mechanism of this inhibition is considered as an interference of metabolites of 2-deoxy-d-glucose with the synthesis of yeast mannan. Cycloheximide, which is an effective inhibitor of protein synthesis in yeast (Kerridge, 1958), inhibited the secretion of non-diffusible carbohydrate in yeast protoplasts, but on the other hand had no effect on the activity of particulate yeast mannan synthetase. Our results clearly show that blocking the synthesis of either part of the mannan-protein complex prevents the extracellular appearance of the other component. The nature of this phenomenon is discussed.  相似文献   

5.
Cell wall synthesis in yeast protoplasts   总被引:6,自引:0,他引:6  
  相似文献   

6.
7.
8.
Ruthenium red was used to stain the surface of fresh And regenerating protoplasts inSacceharomyses cerevisine. The presence of a dense layer, 10–40 mm wide, was demonstrated on the surface of most of the fresh protoplasts. This layer could be removed neither by repeated washings of protoplasts nor by their centrifugation. Ruthenium red proved to be a very useful dye for regenerating walls since it stained both the amorphous and the fibrillar components, but to a different degree, thus permitting their easy differentiation.  相似文献   

9.
Field emission scanning electron microscopy (FESEM) preparation techniques have been successfully adapted for visualization of the internal and external ultrastructure of Mougeotia filaments and protoplasts. FESEM of the innermost layer of cell wall in Mougeotia filaments revealed that microfibrils are deposited parallel to each other in an interconnected mesh and are oriented perpendicular to the direction of elongation. For the first time, the surface of protoplasts at different stages of regeneration has been observed using FESEM. Nascent microfibril deposition occurs between 1 and 2 h after isolation and arrangement of these microfibrils is random for at least 8 h. Observation of the inner surface of the plasma membrane in burst protoplasts showed that microtubules are not strongly attached for at least 3 h after protoplast isolation.  相似文献   

10.
Summary Incorporation of tritiated glucose into cell walls of growingSaccharomyces cerevisiac andSchizosaccharomyces pombe was studied using electron microscopic autoradiography. The pattern and the extent of labelling ofS. cerevisiae cell walls depended on the cell stage in the cell cycle. Quantitative evaluation of autoradiographs showed that the highest rate of wall synthesis took place during bud growth. The incorporation of new material into the wall of growing bud showed an increasing rate with the magnitude of the bud. The incorporation into the mother cell wall was almost negligible during bud growth. The rate of wall synthesis in double cells decreased during cell division. This period and that before new bud initiation was found to be the time of substantially reduced rate of wall replication inS. cerevisiae. A significant random incorporation was observed into the walls of post-division adult cells, both parental and daughter. The cell walls ofS. pombe were labelled almost exclusively at growing tips. The incorporation of tritiated carbohydrates into non-extensile regions ofS. pombe cell walls was found to be only about 5% of the total wall labelling.  相似文献   

11.
Cell wall formation by soybean callus protoplasts   总被引:4,自引:0,他引:4  
  相似文献   

12.
InSaccharomyces cerevisiae, actidione (cycloheximide) at a concentration of 10 μg/ml inhibits protein synthesis, cell multiplication and regeneration of protoplasts to normal cells. Resistance of cells to actidione is not determined by properties of the cell wall. The effect of actidione is rather cytostatic than cytocidal. The ability of protoplasts to regenerate is irreversibly blocked after more than 2 h incubation with actidione.  相似文献   

13.
14.
Summary A number of 2-deoxy-d-glucose (2-DOG) resistant mutants exhibiting resistance to glucose repression were isolated from variousSaccharomyces yeast strains. Most of the mutants isolated were observed to have improved maltose uptake ability in the presence of glucose. Fermentation studies indicated that maltose was taken up at a faster rate and glucose taken up at a slower rate in the mutant strains compared to the parental strains, when these sugars were fermented together. When these sugars were fermented separately, only the 2-DOG resistant mutant obtained fromSaccharomyces cerevisiae strain 1190 exhibited alterations in glucose and maltose uptake compared to the parental strain. Kinetic analysis of sugar transport employing radiolabelled glucose and maltose indicated that both glucose and maltose were transported with higher rates in the mutant strain. These results suggested that the high affinity glucose transport system was regulated by glucose repression in the parental strain but was derepressed in the mutant.  相似文献   

15.
Summary The two mutants (abs) and (wal) affecting the cell morphology of yeast lead also to higher in vivo activities of the cell wall enzymes acid phosphatase. invertase and melibiase.The investigations were supported by a fellowship from the Max Kade Foundation New York.  相似文献   

16.
17.
Summary The growth, cell wall regeneration, and the reversion of the protoplasts ofNadsonia elongata andSchizosaccbaromyces pombe cultivated in nutrient media containing snail enzyme was studied by light and electron microscopy. The protoplasts grew in the presence of snail enzyme and an incomplete cell wall composed of fibrils was formed on their surface. Thus, the presence of snail enzyme inhibited the completion of cell wall structure and, consequently, the reversion of the protoplasts to normal cells. The transfer of these protoplasts to medium free from snail enzyme led first to the completion of the cell wall and then to the reversion of the protoplasts to normal cells. The reported experiments confirmed that the regeneration of the complete cell wall preceded the protoplast reversion.  相似文献   

18.
To assess the dynamics of synthesis of the wall by regenerating Candida albicans protoplasts deposition of chitin and mannoproteins were investigated ultrastructurally using wheat germ agglutinin conjugated with either horseradish peroxidase or colloidal gold, and Concanavalin A coupled to ferritin respectively.Freshly prepared protoplasts lacked wheat germ agglutinin receptor sites but after 1–2 h of regeneration, they were detected. After 4–5 h of regeneration, the cell wall showed a discrete structure which was only labelled with wheat germ agglutinin in thin sections. At this stage of regeneration the outermost layer of the wall was labelled with clusters of Concanavalin A-ferritin particles.After 8 h regeneration, the cell wall appeared compact, and homogenously marked with wheat germ agglutinin whereas only the surface layers appeared consistently labelled with Concanavalin A-ferritin.From these observations we conclude that C. albicans protoplasts are able to regenerate in liquid medium a cell wall consisting of a network of chitin fibrils and mannoproteins at least (glucan polymers were not determined in the present cytological study). The former are the fundamental component of the inner layers at early stages of regeneration, whereas the latter molecules are predominant in the outer layers of the wall.Abbreviations WGA-HRP wheat germ agglutinin conjugated with horseradish peroxidase - WGA-Au wheat germ agglutinin conjugated with colloidal gold - Con A-ferritin Concanavalin A coupled to ferritin  相似文献   

19.
The kinetics of amylolytic enzyme formation by a yeast cell wall lytic Arthrobacter species were studied. Cultivation on autoclaved cells of baker's yeast showed that amylase formation was closely related to trehalose and glycogen dissimilation. Growth on yeast glycogen (0.5%) proceeded quite rapidly ( = 0.31 h–1) with extensive amylase formation during exponential cell multiplication and a further low increase in activity during the stationary phase. Beside amylolytic activity [450 units (U) l–1] the formation of a relatively high level of -glucosidase (90 U l–1) was detected, the latter almost exclusively bound to bacterial cells. Growth on 0.5% trehalose occurred at a reduced rate ( = 0.22 h–1) with post-logarithmic enzyme synthesis in the stationary phase. Amylase activity attained a level of 1200 U l–1, whereas -glucosidase was very low at 7.7 U l–1. Continuous culture experiments in the chemostat showed maximal volumetric productivity of amylase (105 U l–1 h–1) at a dilution rate of 0.15 h–1. Growth on various carbohydrates revealed low levels of amylolytic activity (<100 U l–1), which were increased by a -1,4-glucans and oligosaccharides such as starch, dextrin, maltotriose and maltose. On 0.5% maltose, growth-associated enzyme synthesis (230 U l–1) was detected at a reduced growth rate ( = 0.14 h–1). Amylolytic enzyme preparations from the culture fluid showed an unusual cleavage pattern; acting on starch, the polymer was almost completely hydrolysed to maltotriose and maltose in a molar ratio of 3:1.Correspondence to: W. A. Hampel  相似文献   

20.
During the process of degradation of the cell wall of the yeast form of Pullularia pullulans by the lytic system of Micromonospora chalcea samples were withdrawn at different times and observed under phase contrast and electron microscope. The progressive lysis of the walls reveals a fibrillar component inside the apparently amorphous wall. Freeze etched preparations of cells during the formation and regeneration of protoplasts show that the cellular membrane is split and this method allows the smooth external face of the membrane and other internal face covered by particles to be seen. The fact that the smooth face of the membrane is only visible during the preparation or the regeneration of protoplasts and very rarely when intact cells are fractured, suggests a strong adherence between cell wall and this external layer of the membrane. During the regeneration which takes place as in most of the yeasts and moulds, a special study of the extension of the cell wall is made and a possible mechanism for this extension of the regenerated cell wall is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号