首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of several theories for the origin of the ovule advanced in this century and based largely on fossil evidence, the telomic concept is widely considered the most plausible. Its principal tenet is the evolution of the integument through fusion of sterile branches or telomes around a terminal megasporangium. The only point of agreement in these theories is that the entire nucellus is a megasporangium that retains a single megaspore and the endosporic female gametophyte. Their differences center on the origin of the integument. A new concept offered here on evidence from ovules of both Paleozoic and extant seed plants significantly alters the telomic theory. It proposes that the nucellus is a sporangiophore of stem origin that bears a terminal megasporangium; that at least some of the fused integumentary telomes were fertile; and that among all features cited to characterize ovules, the unique nature of the retained megaspore alone defines the seed habit. Changes in the seed plant megaspore that extended the period of nutrient absorption over the whole course of female gametophyte development, along with complex physiological changes in the nucellus, were probably achieved along a single phylogenetic line beginning in a Late Devonian population of progymnosperms. For such a combination of events to have occurred more than once is highly unlikely, and, therefore, a monophyletic origin for seed plants is proposed. Several primitive features in ovule structure, some not evidenced since the Lower Carboniferous Period, occur in a mutant form of Arabidopsis thaliana isolated from genetically transformed plants. Their recurrence provides additional support for the proposed concept of ovule origin and also suggests that the genetic mechanisms for expression of primitive features in advanced taxa could be initiated in each case by mutation of a single homeotic gene.  相似文献   

2.
The ovule primordium of Costus is trizonate and both its integuments are dermally initiated. With other evidence, this strongly suggests that most, if not all, monocotyledons have dermally initiated integuments, indicating a derived status. The mature seed coat of Costus is completely formed by the outer integument and its principal mechanical layer is the endotesta.
The seed of Costus has an aril, an operculum and a micropylar collar. These structures, characteristic of zingiberalean seeds, are each initiated in a different, specific cell layer of the exostome. The aril is completely dermally initiated. The parenchymatic part of the operculum and the micropylar collar are of dual origin, namely dermal at me integumentary region and subdermal at the raphe.  相似文献   

3.
Menispermaceae is one of the core groups of Ranunculales. The single fertile ovule in each ovary in Menispermaceae varies greatly in integument number, micropyle formation, and integument lobe. However, data regarding ovule morphogenesis in the family are very limited. In this study, we document ovule development of selected species in the Menispermaceae using scanning electron microscopy and light microscopy. Ovule development in Menispermaceae shows the following characteristics. Two ovules are initiated in a young carpel, one of them degenerates gradually and the other develops into a fertile ovule in subsequent stages. Bitegmic in Sinomenium Diels. and Cocculus DC. and unitegmic in Stephania Lour. The formation of unitegmy is probably due to integumentary shifting. The annularly initiated inner integument is of dermal origin and has 2–3 cell layers in the family, but the semi-annularly initiated outer integument is of both dermal and subdermal origin. Both inner and outer integument are cup-shaped at maturity. The cup-shaped outer integument is formed due to the outer integument's extension to the concave (adaxial) side of the funiculus. The obturator is well developed and consists of 2–3 cell layers in Cocculus or 9–11 cell layers in Stephania. Ovule development of Menispermaceae suggests some common characteristics between Cocculus and Sinomenium, and derived unitegmy supports molecular data that indicate Stephania is one of the late-diverging lineages in the family. Integument lobations are present. The sterile ovule shows variations in the degeneration process. These results will provide evidence for exploring the evolution of ovules in Ranunculales.  相似文献   

4.
This paper summarizes the history of classifications of Paleozoic seeds and revaluates the previous classification systems of Paleozoic detached seeds. The current status of studies on Paleozoic. gymnosperms: has been deteched seeds and whole fossil gymnosperms indicates that Seward’s classification system for Paleozoic seeds inadequate since all the seeds of Cardiocarpales in his system are not cordaitean female reproductive organs as Seward’s suggested. It is shown from investigations of whole fossil plants that the members of Cardiocarpales were derived from at least three different major groups of Paleozoic gymnosperms. Moreover, Meyen’s suggestion that the gymnosperms be classified based on symmetry of seeds has been little supported since all the fossil gymnosperms have not shown structurally preserved seeds and organic attachment. In order to relate detached seeds to whole fossil gymnosperms, the present author suggests that five families: Lagenostomaceae, Pachytestaceae, Callospermariaceae, Cryptospermaceae and Cardiocarpaceae be established for Paleozoic seeds and the Order Trigonocarpales be renamed as Pachytestales since the genus Trigonocarpus does not now include structurally preserved seeds. Thus, the five families may be considered either as subdivisions of the three orders of detached seeds: Lagenostomales, Pachytestales and Cardiocarpales, or as female reproductive organs of whole fossil gymnosperms of the five Permo-Carboniferous major groups: Lyginopteridales, Medullosales, Callistophytales Gigantopteridales and Cordaitales. A Key to Paleozoic seeds is provided as follows: A. Seeds with a cupule; integument thin, simple, deeply lobed and less differentiated;nucellus united to integument up to the base of pollen chamber; pollen chamber complex ................................. Lagenostomales, Lagenostomaceae A. Seeds without a cupule; integument thick, complex, unlobed and differentiated into several layers; nucellus free within integument except at the base; pollon chamber simple ................................................................................................ B B. Seeds radially symmetrical in shape; integumentary bundles present; nucellus bundles typical ................................................... Pachytestales, Pachytestaceae B. Seeds bilaterally symmetrical in shape; integumentary bundles present or absent; nucellus bundles often untypical .................................... C (Cardiocarpales) C. Bundles absent in integument; main bundle C-shaped in transverse section with a sclerenchyma bundle ............................................ Cryptospermaceae C. Bundles present in integument; main bundle not C-shaped in transverse section without a sclerenchyma bundle ......................................................... D D. Seeds very small with secretory cavities in integument; nucellus bundles limited in nucellus platform .......................................... Callospermariaceae D. Seeds large without secretory cavities in integument; nucellus bundles limited in nucellus platform or not ....................................... Cardiocarpaceae  相似文献   

5.
The mode of initiation and development of integuments was investigated in six species of five genera in Menispermanceae, which have bitegmic and unitegmic ovules. The species investigated have similar integumentary structures at maturity in each of the bitegmic and unitegmic ovules. In bitegmic ovules (e.g.Cocculus), both integuments are for the most part two-cell layered. The initiation of inner integument (ii) begins with divisions of dermal cells of the nucellar primordium. The initiation of the outer integument (oi) commences with divisions of subdermal cells. In unitegmic ovules (e.g.Stephania), the integument is initiated by periclinal divisions of dermal cells, and cells of subdermal origin (which may represent the oi in case of bitegmy) form a small swelling on the raphal side and, on the antiraphal side, are included in the base of the single integument. Unitegmy of Menispermanceae (at least in the case of the genera investigated) seems to have been derived through elimination of oi, rather than through “integumentary shifting” (Bouman and Calis, 1977), a process suggested for explanation of unitegmy as in Ranunculaceae.  相似文献   

6.
The ovule ofGnetum gnemon has three envelopes around the nucellus. The outer one forms two clear swellings at the lateral sides during the early developmental stages. The middle envelope also shows two swellings in many cases arranged decussately with respect to those of the outer one. All these swellings become obscure or disappear later. The inner envelope arises as an annular primordium and forms several manifest lobes at the stage of pollination. it develops two proliferating structures from its middle portion, viz., a flange and a micropyle-closing tissue. The three envelopes differentiatiate into the fleshy outer, sclerenchymatic middle and compressed inner layers of the seed coat, respectively. The inner one, however, remains restricted to the apical part of the seed owing to endochalazal growth. The outer envelope is derived from both dermal and subdermal cells of the ovule primordium and, therefore, is of dual origin. The middle and inner envelopes are subdermal in origin. The present study has cleared up some conflicting reports in the previous publications.  相似文献   

7.
Isolated ovules occur in many fossil plant assemblages, where they provide important insights into seed‐plant diversity and evolution. However, in many cases, the ovules cannot be attributed to individual groups of seed plants, restricting systematic and evolutionary assessments that can be made from otherwise well‐characterized fossil taxa. In the present paper, we describe a new kind of ovule discovered in tuffaceous sediments from the Permian‐aged Xuanwei Formation in Guizhou Province, China. This ovule has 180° rotational symmetry and an integument comprising a variably thick sarcotesta, a uniformly thick sclerotesta and a uniformly thin endotesta. The nucellus is attached to the integument at least basally and contains a collapsed seed megaspore; a nucellar apex is absent. Both the integument and nucellus are vascularized by paired bundles in the major plane of the ovule; the integumentary bundles are considerably larger than the nucellar bundles and the nucellar bundles emerge from a conical vascular pad. Generation of a three‐dimensional reconstruction based on serial peels revealed the gross morphology and organization of the ovule and highlighted the presence of features consistent with cardiocarpalean‐type ovules (ovule shape, histological features of the integument) and also features more typical of lagenostomalean‐ and trigonocarpalean‐type ovules (large integumentary bundles, presence of nucellar bundles). To assess the affinity and evolutionary significance of the ovule, it has been included in a cladistic matrix of cardiocarpalean‐, lagenostomalean‐ and trigonocarpalean‐type ovules. Results place the ovule within the cardiocarpalean group of ovules known to have been produced by several plant groups, including cordaitean coniferophytes, pteridosperms and Palaeozoic conifers. The cladistic topology supports generic level distinction of the present species, requiring the establishment of Muricosperma guizhouensis Seyfullah & J.Hilton gen. & sp. nov . Lagenostomalean ovules produced by hydrasperman pteridosperms form a basal paraphyletic grade, whereas trigonocarpalean ovules produced by medullosan pteridosperms form a monophyletic group in which Stephanospermum is paraphyletic with respect to Rhynchosperma and Pachytesta. The results also place the Mississippian ovule Mitrospermum bulbosum apart from all of the Pennsylvanian species of Mitrospermum that form a strongly supported clade. Consequently, M. bulbosum is transferred to the new genus Whitaddera Seyfullah & J.Hilton as W. bulbosa (Long) Seyfullah & J.Hilton. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 84–108.  相似文献   

8.
Ovular morphology was examined ultrastructurally inPseudotsuga menziesii to determine the effects of the ovule on pollen development. Vesicles containing lipid-like substances traverse cell walls of the inner epidemis of the integument and release their contents at the integument surface to form the integumentary membrane. A major aqueous secretion from the integument into the micropylar canal is proposed to occur by the movement of the integumentary membrane and its invaginations towards the center of the micropylar canal. The cellular degeneration of the nucellar apex results from the breakdown of vacuoles. After this degeneration, electron-dense substances move from the prothallial cells of the female gametophyte towards the nucellus, and many morphological changes in the nucellus, prothallial cells, and micropylar canal take place simultaneously. We interpret these changes to result from another major secretion from the prothallial cells. Egg cytoplasm appears to disorganize for a short time. Simultaneously, substantial amounts of electron dense-substances in the prothallial cells and lipid-like substances in surface cell walls of the female gametophyte move towards the nucellus as components of the third major secretion.  相似文献   

9.
In seed plants, the ovule is the female reproductive structure, which surrounds and nourishes the gametophyte and embryo. This investigation describes the PRETTY FEW SEEDS2 (PFS2) locus, which regulates ovule patterning. The pfs2 mutant exhibited developmental defects in the maternal integuments and gametophyte. This mutation was inherited as a maternal trait, indicating that gametophyte defects resulted from ovule patterning aberrations. Specifically, the boundary between the chalaza and the nucellus, two regions of the ovule primordia, shifted towards the distal end of pfs2 ovule primordia. Results indicated that the PFS2 locus could: (i) be involved in the development of either the nucellus or the chalaza; or (ii) establish a boundary between these two regions. Examination of genetic interactions of the pfs2 mutation with other well-characterized ovule loci indicates that this locus affects integument morphogenesis. Interestingly, the pfs2 inner no outer and pfs2 strubbelig double mutants had inner integuments that appeared similar to their ancestral precursor. The fossil record indicates that the inner integument evolved by fusion of sterilized sporangia or branches around a central megasporangium. The question of whether the structures observed in these double mutants are homologous or merely analogous to the ancestral precursors of the inner integument is discussed.  相似文献   

10.
The genus Taraxacum Wigg. (Asteraceae) forms a polyploid complex within which there are strong links between the ploidy level and the mode of reproduction. Diploids are obligate sexual, whereas polyploids are usually apomictic. The paper reports on a comparative study of the ovary and especially the ovule anatomy in the diploid dandelion T. linearisquameum and the triploid T. gentile. Observations with light and electron microscopy revealed no essential differences in the anatomy of both the ovary and ovule in the examined species. Dandelion ovules are anatropous, unitegmic and tenuinucellate. In both sexual and apomictic species, a zonal differentiation of the integument is characteristic of the ovule. In the integumentary layers situated next to the endothelium, the cell walls are extremely thick and PAS positive. Data obtained from TEM indicate that these special walls have an open spongy structure and their cytoplasm shows evidence of gradual degeneration. Increased deposition of wall material in the integumentary cells surrounding the endothelium takes place especially around the chalazal pole of the embryo sac as well as around the central cell. In contrast, the integumentary cells surrounding the micropylar region have thin walls and exhibit a high metabolic activity. The role of the thick-walled integumentary layers in the dandelion ovule is discussed. We also consider whether this may be a feature of taxonomic importance.  相似文献   

11.
Studies on embryology and seed morphology are complementary to molecular phylogenetics and of special value at the genus level. This paper discusses the delimitation and evolutionary relationships of genera within the tribe Hydrophylleae of the Boraginaceae. The seven Nemophila species characterized by a conspicuous seed appendage are similar in embryology and seed structure. The ovule is tenuinucellate and unitegmic with a meristematic tapetum. The embryo sac penetrating the nucellar apex is of the Polygonum type, has short-lived antipodal cells, and an embryo sac haustorium. The endosperm is cellular, producing two terminal endosperm haustoria, of which the chalazal has a lateral branch. Embryogeny is of the Chenopodiad type (as in Pholistoma). The seed coat is formed from the small-celled inner epidermis of the integument. The large-celled outer epidermis of the integument disintegrates into scattered cells. Seed pits evolve from irregularly placed inner epidermal cells of the integument. The chalazal part of the ovule produces a cucullus, that functions as an ant-attracting elaiosome. Those species of Nemophila with a conspicuous cucullus form a natural genus. Nemophila is most closely related to Pholistoma. The integumentary seed pits of Nemophila might have evolved from ovular seed pits similar to those in Pholistoma.  相似文献   

12.
The earliest known ovules in the Late Devonian (Famennian) are borne terminally on fertile branches and are typically enclosed in a cupule. Among these ovules are some that have terete integumentary lobes with little or no fusion. Here, we report a new taxon, Latisemenia longshania, from the Famennian of South China, which bears cupulate ovules that are terminal as well as opposite on the fertile axis. Each ovule has four broad integumentary lobes, which are extensively fused to each other and also to the nucellus. The cupule is uniovulate, and the five flattened cupule segments of each terminal ovule are elongate cuneate and shorter than the ovule. Associated but not attached pinnules are laminate and Sphenopteris-like, with an entire or lobate margin. Latisemenia is the earliest known plant with ovules borne on the side of the fertile axis and may foreshadow the diverse ovule arrangements found among younger seed plant lineages that emerge in the Carboniferous. Following the telome theory, Latisemenia demonstrates derived features in both ovules and cupules, and the shape and fusion of integumentary lobes suggest effective pollination and protection to the nucellus. Along with other recent discoveries from China, Latisemenia extends the palaeogeographic range of the earliest seed plants.  相似文献   

13.
Integument initiation and testa development in some Cruciferae   总被引:2,自引:0,他引:2  
This study has shown for the first time that the middle layer (or layers) of the outer integument is (are) of subdermal derivation in at least some taxa of the Cruciferae. The outer integument is initiated in the Cruciferae in three different ways, viz. subdermally (Brassica, Sinapis) , partly subdermally and partly dermally (Lunaria) , or completely dermally (Capsella). These differences in initiation are reflected in the structure of the mature testa. The inner integument is completely of dermal derivation and originally two cell-layers thick, but may become more than two-layered during the ovule and seed maturation by periclinal divisions of the inner cell layer. The consequences of the ontogeny of the integuments for the terminology and interpretation of the mature testa is discussed.  相似文献   

14.
Numerous anatomically preserved ovules assignable to the genus Mitrospermum have been discovered in Upper Pennsylvanian sediments of Eastern Ohio. Although basically similar to Mitrospermum compressum, the newly discovered specimens exhibit several consistent differences. Ovules are strongly platyspermic, up to 4.2 mm long, 4.0 mm wide, and 0.6 mm thick. In the minor plane, ovules are broadest at the base and taper toward the micropyle. The integument exhibits three topographic regions: endotesta, sclerotesta, and sarcotesta. The sarcotesta is extremely broad in the major plane, where it forms two membranous wings. A single terete vascular bundle enters the base of the ovule, traverses the integument, and divides to form two integumentary bundles and a conspicuous nucellar platform. Integumentary bundles extend toward the tip of the ovule at the margin of the sarcotesta and sclerotesta. A pollen chamber with a prominent nucellar beak is delimited at the tip of the nucellus. Consistent differences in vascularization, size, nature of the seed base, features of the pollen chamber, and the Late Pennsylvanian age demonstrate that the specimens represent a distinct species. The discovery of these ovules extends the stratigraphic range of Mitrospermum to the Upper Pennsylvanian of Ohio.  相似文献   

15.
Sripleng , Aksorn , (Kasetsart U., Bangkok, Thailand), and Frank H. Smith . Anatomy of the seed of Convolvulus arvensis. Amer. Jour. Bot. 47(5) : 386—392. Illus. 1960.–The anatropous ovule has a small, ephemeral nucellus covered by a massive integument. Shortly after fertilization, a lateral pouch develops from the upper portion of the embryo sac toward the dorsal side of the ovule and then downward. This leaves a partial integumentary septum in the base of the seed. The cellular endosperm is mostly absorbed by the embryo. Two—6 cell layers persist on all sides of the seed except below the cotyledons on the dorsal side where larger amounts persist. Over most of the seed the dermatogen develops into an epidermis that consists in part of groups of thick-walled elongate cells that produce the papillose appearance of the mature seed. The cells beneath the dermatogen divide periclinally and form 2 layers. The outer layer undergoes anticlinal divisions and differentiates a subepidermal layer of small, rectangular, thick-walled cells that become lightly lignified and suberized. The cells of the inner layer undergo some anticinal and periclinal divisions, elongate and differentiate as palisade sclerenchyma. The inner layers of the integument consist of parenchyma cells that are crushed and partially absorbed at maturity. The pad on the basal end of the seed, between the hilum and micropyle, is derived from a multiple epidermis that is differentiated into several layers of rectangular cells and a layer of palisade sclerenchyma. The subepidermal and palisade layers found over other parts of the seed dip beneath the pad.  相似文献   

16.
17.
Specimens of the medullosan ovule Pachytesta gigantea possess internal ribs which extend from the chalaza up to the level of the pollen chamber. These internal ribs are present adjacent to the primary ribs on the inner surface of the integument and appear histologically similar to the sclerotesta. The cuticle of the endotesta and the nucellus closely conform to the internal ribs in shape and the shrinkage pattern exhibited by the cuticular membranes suggests that the cuticle of the nucellus and cuticle of the endotesta may have been fused to one another along the internal ribs at some stage of development. The implications of this possible nucellar—integumentary fusion are discussed relative to the classification and phylogeny of Paleozoic seeds.  相似文献   

18.
北美香柏雌球果的发育   总被引:4,自引:0,他引:4  
用扫描电镜(SEM)观察了北美香柏 Thuja occidentalis 雌球果的发育过程。在北京,北美香柏的雌球果是在八月初由营养芽转变而来,雌球果一般有4~6对苞片,中间2~3对可育,每一苞片腋部着生两枚胚珠,在可育苞片腋部最先观察到一扁平的隆起,并在其上分化出两个胚珠原基,接着分化出珠被和珠心,最后形成扁平而两侧对称的胚珠。在北美香柏雌球果发育过程中,约一半的雌球果在2~3对可育苞片中位于下面的1~2对的腋部产生3个胚珠原基,中间一个较小,并在以后的发育中逐渐退化。由此推测北美香柏的雌球果可能是由祖先类群中每一苞片具多于2个胚珠的雌球果演化而来。在光镜下对雌球果维管系统的观察发现,传粉前幼小雌球果的苞片内仅有一束维管束,传粉后随着苞片基部的居间生长,有4—8束维管束在苞片内形成,但是新发育的维管束木质部和韧皮部相对位置与正常叶性器官一致,这与在以往报道的柏科植物成熟雌球果的苞片中均有反向维管束的发育不同。北美香柏雌球果早期发育和维管束分析结果支持傅德志和杨亲二提出的解释裸子植物生殖器官形态演化的“苞鳞-种鳞复合体”理论。关键词北美香柏;雌球果的发育;胚珠分化;SEM  相似文献   

19.
The developmental anatomy and morphology of the ovule and seed in several species of Heliconia were investigated as part of an embryological study of the Heliconiaceae and to provide a better understanding of their relationships with the other families of the Zingiberales. Heliconia species have an ovule primordium with an outer integument of both dermal and subdermal origin. The archesporial cell is divided into a megasporocyte and a single parietal cell, which in turn are divided only anticlinally to form a single parietal layer, disintegrating later during gametogenesis. The embryo sac was fully developed prior to anthesis. In the developing seed, the endosperm was nuclear, with wall formation in the globular stage; a nucellar pad was observed during embryo development, but later became compressed. The ripe fruit contained seeds enveloped by a lignified endocarp that formed the pyrenes, with each pyrene having an operculum at the basal end; the embryo was considered to be differentiated. Most of these characteristics are shared with other Zingiberales, although the derivation of the operculum from the funicle and the formation of the main mechanical layer by the endocarp are unique to the Heliconiaceae.  相似文献   

20.
Bambusa tulda and Thyrsostachys siamensis resemble each other in having an obovate ovary which is hairy and thickened along the apex, a pseudo-crassinucellate ovule with a wide region of attachment, poorly-developed and ephemeral outer integument, an inner integument which fails to grow beyond the nucellus, 'Polygonum' type of embryo sac ontogeny, parallel orientation of embryo sac to the long axis of the ovule, multiple antipodals which retain apical position in the embryo sac even during post-fertilization phase of development, an ephemeral nucellus, relatively small bambusoid embryos, and many-layered and apically thickened pericarp. However, they differ from each other in their gynoecial structure, the extent of the development of the outer integument, organization of megaspore tetrads and development-stage-related behaviour of the inner integument in the fertilized ovules. These taxa also differ from other members of the subfamily Bambusoideae in the structure of the mature ovule, endosperm and pericarp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号