首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pure culture of an EDTA-degrading strain was isolated from the Taiwan environment. It was identified as Burkholderia cepacia, an aerobic bacterium, elliptically shaped with a length of 5–15 m. The degradation assay showed that the degradation efficiency of Fe-EDTA by B. cepacia was approximately 91%. Evaluation of kinetic parameters showed that Fe-EDTA degradation followed substrate inhibition kinetics. This is evident from the decrease in specific growth rate with an increase in the initial substrate concentration greater than 500 mg/l. To estimate the kinetic parameters – max, KS and KI, five substrate–inhibition models were used. From the results of non-linear regression, the value of max ranged from 0.150 to 0.206 d–1, KS from 74 to 87 mg/l, and KI from 890 to 2289 mg/l. The five models were found to underestimate the maximum specific growth rate by 1.5–3.7. Therefore, predictions based on these models would result in lower predicted value than those from the experimental kinetic data.  相似文献   

2.
The toxic effects of phenol, a common constituent of many industrial effluents, necessitates treatment of the polluted streams. Biodegradation is a popular technique and enjoys many advantages. The degradation of phenol with Arthrobacter species is studied in batch cultures and it is observed that the substrate is inhibiting. The fit of various models, including the model proposed earlier by us [17], to the experimental data is studied. The model is used to fit available data in literature, which unfortunately is very sparse. In all the cases the present model fits the data best.List of Symbols S mg/l substrate concentration - S 0 mg/l threshold substrate concentration - K I mg/l inhibition constant - K m , K s mg/l half saturation constant of growth kinetics - m, n constants - 1/h specific growth rate - m 1/h maximal specific growth rate - X mg/l biomass concentration at time t - X 0 mg/l initial biomass concentration Abbreviations MTCC Microbial Type Culture Collection - IMTECH Institute of Microbial Technology The cooperation of the staff of the Biosciences and Biotechnology Center, I.I.T. Madras is greatly appreciated.  相似文献   

3.
Summary Cell growth and phenol degradation kinetics were studied at 10°C for a psychrotrophic bacterium, Pseudomonas putida Q5. The batch studies were conducted for initial phenol concentrations, So, ranging from 14 to 1000 mg/1. The experimental data for 14<=So<=200 mg/1 were fitted by non-linear regression to the integrated Haldane substrate inhibition growth rate model. The values of the kinetic parameters were found to be: m=0.119 h–1, K S=5.27 mg/1 and K I=377 mg/1. The yield factor of dry biomass from substrate consumed was Y=0.55. Compared to mesophilic pseudomonads previously studied, the psychrotrophic strain grows on and degrades phenol at rates that are ca. 65–80% lower. However, use of the psychrotrophic microorganism may still be economically advantageous for waste-water treatment processes installed in cold climatic regions, and in cases where influent waste-water temperatures exhibit seasonal variation in the range 10–30°C.Nomenclature K S saturation constant (mg/l) - K I substrate inhibition constant (mg/l) - specific growth rate (h–1) - m maximum specific growth rate without substrate inhibition (h–1) - max maximum achievable specific growth rate with substrate inhibition (h–1) - S substrate (phenol) concentration (mg/l) - So initial substrate concentration (mg/l) - Smax substrate concentration corresponding to max (mg/l) - t time (h) - X cell concentration, dry basis (mg DW/l) - Xf final cell concentration, dry basis (mg DW/l) - Xo initial cell concentration, dry basis (mg DW/l) - Y yield factor (mg DW cell produced/mg substrate consumed)  相似文献   

4.
Summary The batch fermentation of whey permeate to lactic acid was improved by supplementing the broth with enzyme-hydrolyzed whey protein. A mathematical model based on laboratory results predicts to a 99% confidence limit the kinetics of this fermentation. Cell growth, acid production and protein and sugar use rates are defined in quantifiable terms related to the state of cell metabolism. The model shows that the constants of the Leudeking-Piret model are not true constants, but must vary with the medium composition, and especially the peptide average molecular weight. The kinetic mechanism on which the model is based also is presented.Nomenclature K i lactic acid inhibition constant (g/l) - K pr protein saturation constant during cell growth (g/l) - K pr protein saturation constant during maintenance (g/l) - K s lactose saturation constant (g/l) - [LA] lactic acid concentration (g/l) - [PR] protein concentration (g/l) - [S] lactose concentration (g/l) - t time (h) - [X] cell mass concentration (g/l) - , fermentation constants of Leudeking and Piret - specific growth rate (l/h) - Y g, LA/S acid yield during cell growth (g acid/g sugar) - Y m, LA/S acid yield during maintenance (g acid/g sugar) - Y x/pr yield (g cells/g protein) - specific sugar use rate during cell growth (g sugar/h·g cell) - specific sugar use rate during maintenance (g sugar/h·cell)  相似文献   

5.
The dissolved oxygen (DO) level is the key factor which decides the rate of degradation of the organic load in aerobic growth conditions. In this study the role of DO levels on the utilization of phenols has been reported using the continuous culture system. A phenol-utilizing strain, Pseudomonas CF600 has been used as a model. Its phenol-degrading capacity was studied using continuous cultivation for a period of 60 days. The bioreactor was kept at a dilution rate of 0.006 h–1 with DO levels maintained at 2, 3, and 4 ppm keeping all the other cultivation conditions constant. Physiological variations under the cultivation conditions were studied by monitoring off-line phenol utilization and respirometric analysis of harvested culture against different substrates. It was observed that the accumulation of 2-hydroxymuconate semialdehyde (HMS), an intermediate in the phenol degradation pathway, depends on the DO level. The maximum level of HMS in the medium observed was 3.92 M when DO was maintained at 2 ppm whereas with 3 ppm of DO, HMS level was below 0.4 M. Oxygen uptake data of the cells harvested from cultures grown at different DO levels showed that the uptake was highest at 3 ppm DO for all the substrates tried. When phenol was used as substrate, the oxygen uptake rate was 42.66, 66.36 and 35.55 nM/min/mg dry weight of cells at 4, 3 and 2 ppm DO respectively. Results show that DO levels influence the rate of phenol utilization in Pseudomonas CF600.  相似文献   

6.
Attemps were made to demonstrate the role of yeasts in the degradation of benzene compounds under natural soil conditions. Yeasts were isolated from acidic sandy soil supplied with benzene compounds. For this purpose the slant culture method was used. Growth on the benzene compounds took place on solid growth media at 10°C. Several yeast species were isolated: Leucosporidium scottii, Rhodotorula aurantiaca, Rhodotorula mucilaginosa, Trichosporon dulcitum, Trichosporon moniliiforme and Schizoblastosporion starkeyi-henricii. Cryptococcus humicolus and Cryptococcus laurentii were isolated from liquid enrichment cultures. All these strains assimilated several benzene compounds in pure culture.Cresol removal from contaminated soil was speeded up by inoculation with Rhodotorula aurantiaca G36. It was demonstrated that this yeast utilized this compound in competition with the soil microflora.  相似文献   

7.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   

8.
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate μmax 0.33 h−1, metabolic coefficient k = 4.4, yield coefficient Y x/s  = 0.23 and rate of degradation Q = 0.506 h−1. The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5′end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.  相似文献   

9.
Chromatium vinosum DSM 185 was grown in continuous culture at a constant dilution rate of 0.071 h-1 with sulfide as the only electron donor. The organism was subjected to conditions ranging from phosphate limitation (S R-phosphate=2.7 M and S R-sulfide=1.8 mM) to sulfide limitation (S R-phosphate=86 M and S R-sulfide=1.8 mM). At values of S R-phosphate below 7.5 M the culture was washed out, whereas S R-phosphate above this value resulted in steady states. The saturation constant (K ) for growth on phosphate was estimated to be between 2.6 and 4.1 M. The specific phosphorus content of the cells increased from 0.30 to 0.85 mol P mg-1 protein with increasing S R-phosphate. The specific rate of phosphate uptake increased with increasing S R-phosphate, and displayed a non-hyperbolic saturation relationship with respect to the concentration of phosphate in the inflowing medium. Approximation of a hyperbolic saturation function yielded a maximum uptake rate (V max) of 85 nmol P mg-1 protein h-1, and a saturation constant for uptake (K t) of 0.7 M. When phosphate was supplied in excess 8.5% of the phosphate taken up by the cells was excreted as organic phosphorus at a specific rate of 8 nmol P mg-1 protein h-1.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate; max, maximum specific growth rate - maximum specific growth rate if the substrate were not inhibitory - K saturation constant for growth on phosphate - V max maximum rate of phosphate uptake - K i saturation constant for phosphate uptake - K i inhibition constant for growth in the presence of sulfide - S R concentration of substrate in the inflowing medium  相似文献   

10.
Phenol degradation efficiency of cold-tolerant Arthrobacter sp. AG31 and mesophilic Pseudomonas putida DSM6414 was compared. The cold-tolerant strain was cultivated at 10°C, while the mesophile was grown at 25°C. Both strains degraded 200 mg and 400 mg phenol/l within 48–72 h of cultivation, but the cold-tolerant strain produced more biomass than the mesophile. Both strains oxidized catechol by the ortho type of ring fission. Catechol 1,2 dioxygenase (C1,2D) activity was found intra- and extracellularly in the absence and in the presence of phenol. In the presence of 200 mg phenol/l, C1,2D activity of the mesophile was about 1.5- to 2-fold higher than that of the cold-tolerant strain. However, an initial phenol concentration of 400 mg/l resulted in a comparable enzyme activity of the cold-tolerant and the mesophilic strain. The two strains differed significantly in their toxicity pattern towards 12 aromatic (mostly phenolic) compounds at different growth temperatures, which was determined via growth inhibition in the presence of nutrients and toxicants. For the cold-tolerant strain, toxicity was significantly lower at 10°C than at 25°C. The mesophile showed a significantly lower susceptibility to high hydrocarbon concentrations when grown at 25°C compared to 10°C.Communicated by K. Horikoshi  相似文献   

11.
Summary Ethanol was produced by a strain ofPichia stipitis adapted to an inhibitory acid wood hydrolysate ofPinus radiata. The best ethanol productivity for batch cultures was 0.21 g/l h at 0.7% ethanol. Varying culture conditions increased ethanol concentration to 0.76%, however the productivity decreased to 0.18 g/l h. A decrease in ethanol concentration in the culture fluid was noted late in the batch which suggested ethanol catabolism. Values of kinetic parameters (K m,K s, max, andV max) were evaluated for this system. The use of calcium alginate immobilized cells in a continuous-flow stirred tank reactor lead to enhanced fermentative performance, namely a maximum productivity of 0.27 g/l h and 1.13% ethanol yield. The immobilized cells in continuous flow reactors represent an attractive option for fermenting sugars released by sulphuric acid hydrolysis ofP. radiata wood.  相似文献   

12.
Specific nitrogenase activity inAzospirillum brasilense ATCC 29145 in surface cultures under air is enhanced from about 50 nmol C2H4·mg protein-1·h-1 to 400 nmol C2H4 by the addition of 1 mM phenol. 0.5 and 2 mM phenol added increase the rate 5-fold and 4-fold. This enhancement effect is observed only between 2 and 3 days after inoculation, with only a small reduction of the growth of the cells by the phenol added. In surface cultures under 1% O2, nitrogenase activity is slightly reduced by the addition of 1–0.01 mM phenol. Utilization of succinate is enhanced during the period of maximum enhancement of nitrogenase activity by 60% by addition of 1 mM phenol. The cells did not produce14CO2 from [U-14C] phenol, neither in surface cultures nor in liquid cultures and less than 0.1% of the phenol was incorporated into the cells. A smaller but significant enhancement of nitrogenase activity by about 100% in surface cultures under air was found withKlebsiella pneumoniae K 11 after addition of 1 mM phenol. However, inRhizobium japonicum 61-A-101 all phenol concentrations above 0.01 mM reduced nitrogenase activity. With 1 mM phenol added activity was reduced to less than 10% with no effect on the growth in the same cultivation system. With thisRhizobium japonicum strain significant quantities of phenol (25 mol in 24 h by 2·1012 cells) were metabolized to14CO2, with phenol as sole carbon source. WithAzospirillum brasilense in liquid culture under 1% and 2% O2 in the gas phase, no enhancement of nitrogenase activity by phenol was noticed.  相似文献   

13.
This paper presents a new concept for the control of nitrification in highly polluted waste waters. The approach is based on mathematical modelling. To determine the substrate degradation rates of the microorganisms involved, a mathematical model using gas measurement is used. A fuzzy-controller maximises the capacity utilisation efficiencies. The experiments carried out in a lab-scale reactor demonstrate that even with highly varying ammonia concentrations in the influent, the nitrogen concentrations in the effluent can be kept within legal limits.List of Symbols c mg/l concentration - c mg/l gas concentration - H 2 Henry-coefficient - k L a 1/h mass transfer coefficient - mol/l dissociation constant - K iS mg/l substrate inhibitor constant - k iH mg/l inhibitor constant - k S mg/l saturation constant - K O2 mg/l oxygen saturation constant - r(B) mg/lh growth rate - r(S) mg/lh degradation reaction rate - t v h retention time - T °C temperature - V 1 volume - V 1/h flow rate - Y g/g yield coefficient - k b capacity utilisation efficiency - 1/h specific growth rate  相似文献   

14.
The oxidation of benzene to phenol by whole cells of Nitrosomonas europaea is catalysed by ammonia monooxygenase, and therefore requires a source of reducing power. Endogenous substrates, hydrazine, hydroxylamine and ammonium ions were compared as reductants. The highest rates of benzene oxidation were obtained with 4 mM benzene and hydrazine as reductant, and equalled 6 mol· h-1·mg protein-1. The specificity of ammonia monooxygenase for benzene as a substrate was determined by measuring k cat/K m for benzene relative to k cat/K m for uncharged ammonia, a value of 0.4 being obtained. Phenol was found to be further hydroxylated to yield hydroquinone. This reaction, like benzene oxidation, was sensitive to the ammonia monooxygenase inhibitor allylthiourea. Catechol and resorcinol were not detected as products of phenol oxidation, implying that at least 88% of the hydroxylation is para-directed.  相似文献   

15.
Biodegradation of phenol and 4-chlorophenol (4-cp) using pure culture of Candida albicans PDY-07 under anaerobic condition was studied. The results showed that the strain could completely degrade up to 1,800 mg/l phenol within 68 h. The capacity of the strain to degrade phenol was higher than that to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Comparatively, low-concentration phenol from 25 to 150 mg/l supplied a carbon and energy source for Candida albicans PDY-07 in the early phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in that 50 mg/l 4-cp was degraded within less time than that without phenol. While the biodegradation of 50 mg/l 4-cp was inhibited in the presence of 200 mg/l phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp as single and dual substrates in batch cultures. The results demonstrated that the models adequately described the dynamic behaviors of biodegradation by Candida albicans PDY-07.  相似文献   

16.
The main limnological features of Lake Arcas-2 were followed through two consecutive stratification periods. Its morphometrical characteristics, such as the high relative depth (31%) and steep basin walls, enhance the sharp water stratification with the formation of an oxic-anoxic boundary at 8.8–9 m and a sulphide-rich hypolimnion during the thermal stagnation. The ionic sequence was SO 4 2- >Alkal.>Cl- and Ca2+>Mg2+>Na+>K+ and the mineralization was high, with water conductivity higher than 2500 S cm-1. It is mesotrophic with epilimnetic chlorophyll a concentrations of 2–5 g l-1 and metalimnetic of 8 g l-1. The depth of the euphotic zone was established at around 8 m. Phosphorus concentration in the oxic waters was low but largely accumulated in the anoxic hypolimnion, together with other compounds such as ammonium, silicate, sulphide, etc. Nitrate was abundant in the oxic waters and is related to the use of fertilizers in the surrounding fields. A fine-layer sampler was used to study the oxic–anoxic interface where a dense plate of Chromatiaceae developed. The dominant species, Chromatium weissei, reached a maximum integrated biomass of 121 gWW m-2 during August. Thiocapsa sp., representing less than 1% of total purple bacteria, had an integrated biomass of 0.8 gWW m-2 and Amoebobacter sp. (1%) had 1 gWW m-2. Other populations were sharply stratified i.e. Oscillatoria cf. ornata and Cryptomonas erosa. Those organisms, and mainly the cyanobacterium, accounted for the high chlorophyll a concentrations (>100 g l-1) recorded in the anoxic waters of the hypolimnion. Green bacteria were scarcely developed due to the shadowing effect caused mainly by the purple bacterial bloom.  相似文献   

17.
An aerobic, nitrate-respiring bacterium which can degrade phenol under aerobic conditions was isolated and identified as Alcaligenes sp. Under microaerobic culture, the maximum concentration for phenol to be degraded was 0.29 mM in the presence of nitrate/O2 but only 0.16 mM in the presence of O2 alone. Azide (0.1 mM) and Triton X-100 (0.5%) inhibited nitrate reduction and cell growth completely in anoxic culture but had little or no effect on nitrate reduction in aerobic culture.  相似文献   

18.
Two mixed cultures, phenol-oxidizing (PO) and glucose-oxidizing (GO), were cultivated in two parallel chemostat reactors. The PO culture was enriched on phenol, and the GO culture was enriched on glucose. Batch biodegradation experiments were conducted to examine the degradation of 4-chlorophenol (4-CP) under various substrate conditions. The results indicate that in the absence of added growth substrate, 4-CP transformation by PO culture was complete at S c o /X o (initial 4-CP concentration/initial biomass concentration) 0.27 and that by GO culture was complete at S c o /X o = 0.09. In the presence of 5–500 mg phenol/l, the phenol dosage required to achieve the complete transformation of 4-CP was 60 mg/l at S c o /X o = 1, increasing to 120 mg/l at S c o /X o = 2, and to 180 mg/l at S c o /X o = 5. As glucose was added to the GO culture at a concentration of over 5–500 mg chemical oxygen demand (COD)/l, 4-CP was not completely transformed at S c o /X o = 5 [S c o = 50 mg/l, X o = 10 mg/l volatile suspended solids (VSS)]. These two cultures in utilizing added growth substrate were easily switched between glucose and phenol. Overall, the capacity of PO culture to degrade 4-CP, expressed as T c (4-CP mass consumed /biomass inactivated, having unit of mg 4-CP/mg VSS), was 0.15–0.80, which compares with T c values of 0.05–0.26 for GO culture. This work shows that adding phenol as a growth substrate is preferable over adding glucose, as it enhances 4-CP transformation, but a final choice should take into account both degradation efficiency and the risk of phenol toxicity.  相似文献   

19.
Summary The apparent energy of activation (E a), Michaelis-Menten constant (K mfor oxaloacetate), V max/K mratios and specific activities of NADP+-malate dehydrogenase (NADP+-MDH; EC 1.1.1.82) were analyzed in plants of Barnyard grass from Québec (QUE) and Mississippi (MISS) acclimated to two thermoperiods 28/22°C, 21/15°C, and grown under two CO2 concentrations, 350 l l-1 and 675 l l-1. E avalues of NADP+-MDH extracted from QUE plants were significantly lower than those of MISS plants. K mvalues and V max/K mratios of the enzyme from both ecotypes were similar over the range of 10–30°C but reduced V max/K mratios were found for the enzyme of QUE plants at 30 and 40°C assays. MISS plants had higher enzyme activities when measured on a chlorophyll basis but this trend was reversed when activities were expressed per fresh weight leaf or per leaf surface area. Activities were significantly higher in plants of both populations acclimated to 22/28°C. CO2 enrichment did not modify appreciably the catalytic properties of NADP+-MDH and did not have a compensatory effect upon catalysis or enzyme activity under cool acclimatory conditions. NADP+-MDH activities were always in excess of the amount required to support observed rates of CO2 assimilation and these two parameters were significantly correlated. The enhanced photosynthetic performance of QUE plants under cold temperature conditions, as compared to that of MISS plants, cannot be attributed to kinetic differences of NADP+-malate dehydrogenase among these ecotypes.  相似文献   

20.
Chemolithotrophic nitrifying bacteria are dependent on the presence of oxygen for the oxidation of ammonium via nitrite to nitrate. The success of nitrification in oxygen-limited environments such as waterlogged soils, will largely depend on the oxygen sequestering abilities of both ammonium- and nitrite-oxidizing bacteria. In this paper the oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter winogradskyi serotype agilis were determined with cells grown in mixed culture in chemostats at different growth rates and oxygen tensions.Reduction of oxygen tension in the culture repressed the oxidation of nitrite before the oxidation of ammonium was affected and hence nitrite accumulated. K m values found were within the range of 1–15 and 22–166 M O2 for the ammonium- and nitrite-oxidizing cells, respectively, always with the lowest values for the N. europaea cells. Reduction of the oxygen tension in the culture lowered the half saturation constant K m for oxygen of both species. On the other hand, the maximal oxygen consumption rates were reduced at lower oxygen levels especially at 0 kPa. The specific affinity for oxygen indicated by the V max/K m ratio, was higher for cells of N. europaea than for N. winogradskyi under all conditions studied. Possible consequences of the observed differences in specific affinities for oxygen of ammonium-and nitrite-oxidizing bacteria are discussed with respect to the behaviour of these organisms in oxygen-limited environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号