首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We have isolated cDNA clones derived from three mRNA sequences which are inducible by DIF, the putative stalk-specific morphogen of Dictyostelium. The three mRNA sequences are selectively expressed in cells on the stalk cell pathway of differentiation and we have compared them with previously characterized prestalk-enriched mRNA sequences. We find these latter sequences are expressed without a dependence on DIF, are much less highly enriched in prestalk over prespore cells and are expressed earlier during development than the DIF-inducible mRNA sequences. We propose two distinct mechanisms whereby a mRNA may become enriched in prestalk cells. An apparently small number of genes, represented by those we have isolated, is inducible by DIF and accumulates only in prestalk cells. We suggest that a second class of prestalk-enriched mRNA sequences are induced by cAMP to accumulate in all cells during aggregation and then become enriched in prestalk cells by selective loss from prespore cells.  相似文献   

2.
While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.  相似文献   

3.
The effects of low temperature (5°C) on cell-type conversion in whole slugs of Dictyostelium discoideum and their anterior prestalk- and posterior prespore-isolates were examined immunohistochemically and electronmicroscopically. When slugs were incubated for nine days at 5°C, the proportion of cells containing spore-antigens increased from about 75% to 85%. More important, the proportion of prespore and spore cells increased from about 3% to 40% in anterior prestalk isolates incubated at 5°C for 12 days, but no cell-type conversion from prespore to prestalk cells occurred in posterior prespore isolates. Therefore, the mechanism regulating the proportions of cells that operates at 21 °C does not operate at low temperature. The cells with full competence for stalk differentiation could change into stalk cells even at 5°C, because a short stalk was always formed when early culminants were transferred to low temperature. The effects of low temperature on several sequential steps of cell differentiation are discussed on the basis of these findings. The ultrastructural characteristics during the process of cell-type conversion are also described.  相似文献   

4.
When cells dissociated from "slugs" are allowed to reaggregate, they reconstruct slugs. During this process, the cells showed a marked decrease in the ratio of labeled RNA lacking poly(A) to labeled total RNA as compared with that of cells in normal slugs. Irrespective of the change in total labeled RNA, the ratio remained low even after 6 h of reconstruction. Sucrose density gradient analysis of RNA showed that the synthesis of high molecular weight rRNA (26S and 17S) was considerably repressed in reconstructed slugs as compared with normal slugs. Polyacrylamide gel electrophoresis of low molecular weight rRNA revealed that the synthesis of 5S rRNA, but not 4S tRNA, was repressed.  相似文献   

5.
Dictyostelium is a favored model for studying problems in cell and developmental biology. To comprehend the genetic potential and networks that direct growth and multicellular development, we are performing a large-scale analysis of Dictyostelium cDNAs. Here, we newly determine 7720 nucleotide sequences of cDNAs from the multicellular, slug stage (S) and 10 439 from the unicellular, vegetative stage (V). The combined 26 954 redundant ESTs were computer assembled using the PHRAP program to yield 5381 independent sequences. These 5381 predicted genes represent about half of the estimated coding potential of the organism. One-third of them were classified into 12 functional categories. Although the overall classification patterns of the V and S libraries were very similar, stage-specific genes exist in every category. The majority of V-specific genes function in some aspect of protein translation, while such genes are in a minority in the S-specific and common populations. Instead, genes for signal transduction and multicellular organization are enriched in the population of S-specific genes. Genes encoding the enzymes of basic metabolism are mainly found in the common gene population. These results therefore suggest major differences between growing and developing Dictyostelium cells in the nature of the genes transcribed.  相似文献   

6.
Prespore-specific Antigen (PsA) is selectively expressed on the surface of prespore cells at the multicellular migratory slug stage of Dictyostelium discoideum development. It is a developmentally regulated glycoprotein that is anchored to the cell membrane through a glycosyl phosphatidylinositol (GPI) anchor. We present the results of an in vitro immunological investigation of the hypothesis that PsA functions as a cell adhesion molecule (CAM), and of a ligand-binding assay indicating that PsA has cell membrane binding partner(s). This is the first evidence to implicate a direct role for a putative CAM in cell-cell adhesion during the multicellular migratory slug stage of D. discoideum development. Cell-cell adhesion assays were carried out in the presence or absence of the monoclonal antibody (mAb) MUD1 that has a single antigenic determinant: a peptide epitope on PsA. These assays showed specific inhibition of cell-cell adhesion by MUD1. Further, it was found that a purified recombinant form of PsA (rPsA), can neutralize the inhibitory effect of MUD1; the inhibitory effect on cell-cell adhesion is primarily due to the blocking of PsA by the mAb. The resistance of aggregates to dissociation in the presence of 10 mM EDTA (ethylenediamintetraacetic acid) indicates that PsA mediates EDTA-stable cell-cell contacts, and that PsA-mediated cell adhesion is likely to be independent of divalent cations such as Ca(2+) or Mg(2+).  相似文献   

7.
Time-lapse video light microscopy was used to study the emergence and maturation of the migratory slug from a D. discoideum aggregate. The anterior part, the tip of this simple multicellular organism, establishes migration prior to the definition of the rear, and hence the length of the slug. It was found that newly formed slugs of wild-type strain WS380B can reach lengths greater than 1 cm, yet mature slugs of this strain are rarely longer than 2-3 mumm. Often the tip extended out of the aggregation mound upon an arching pillar of cells. After the tip first touched the substratum, it commenced migration with a rapid succession of movement steps. Here we show that at the initiation of migration, a differential rate of cell movement along the developing slug axis results in a series of complicated changes, before the stable and mature shape of the slug is formed. Our results lead to new conclusions about D. discoideum slug formation and shape maintenance. Evidence is presented for regulation of slug length.  相似文献   

8.
During the slug stage, the cellular slime mould Dictyostelium discoideum moves towards light sources. We have modelled this phototactic behaviour using a hybrid cellular automata/partial differential equation model. In our model, individual amoebae are not able to measure the direction from which the light comes, and differences in light intensity do not lead to differentiation in motion velocity among the amoebae. Nevertheless, the whole slug orientates itself towards the light. This behaviour is mediated by a modification of the cyclic AMP (cAMP) waves. As an explanation for phototaxis, we propose the following mechanism, which is basically characterized by four processes: (i) light is focused on the distal side of the slug as a result of the so-called ''lens-effect''; (ii) differences in luminous intensity cause differences in NH3 concentration; (iii) NH3 alters the excitablity of the cell, and thereby the shape of the cAMP wave; and (iv) chemotaxis towards cAMP causes the slug to turn. We show that this mechanism can account for a number of other behaviours that have been observed in experiments, such as bidirectional phototaxis and the cancellation of bidirectionality by a decrease in the light intensity or the addition of charcoal to the medium.  相似文献   

9.
The last 5 years have resulted in many advances in knowledge of the cytoskeleton and motility of individual cells. Here the problem of multicellular movement is addressed. The Dictyostelium discoideum slug is examined, and models for how approximately 100,000 cells become coordinated to move are briefly reviewed. Experiments that contributed to model building as well as those used to test models are considered. Four levels of experimentation are considered: (1) the extracellular matrix (ECM) is examined as a component of the system; (2) information obtained by examining the organisation of slug cells through sectioning is presented; (3) time, the 4th dimension, is considered, and approaches to studying the dynamics of cell interactions from the point of view of movement are outlined, and (4) cell adhesion molecules are addressed.  相似文献   

10.
Recent experimental work suggests that under normal conditions cell sorting plays an important part in maintaining and re-establishing the axial pattern of cell types in the slug stage of the cellular slime mold Dictyostelium discoideum. Following removal of the anterior zone of the slug, anterior-like cells that are normally distributed throughout the posterior of the slug rapidly migrate to the anterior end of the transected slug, and new anterior-like cells appear in the posterior portion. These results provide evidence that the direct linkage between spatial location and differentiation hypothesized in positional information models of spatial pattern formation is not universal. In this paper we develop and analyze a class of mathematical models of the slug in which cell determination can be less rigidly tied to spatial location, and which involve chemotactic cell sorting to re-establish and maintain the spatial pattern of cell types. We show that these models can reproduce the qualitative aspects of the experimental observations and that sorting takes place on the observed time scale when reasonable values of the parameters are used.  相似文献   

11.
Starvation induces free-living Dictyostelium discoideum amoebae to form slugs that typically contain 100,000 cells. Only recently have sufficient clues become available to suggest how coordinated cell actions might result in slug movement. We propose a “squeeze-pull” model that involves circumferential cells squeezing forward a cellular core, followed by pulling up of the rear. This model takes into account the different classes of cells in the slug; it is proposed that prestalk cells are engines and prespore cells are the cargo.  相似文献   

12.
Protein phosphatase activities in developing Dictyostelium discoideum cells were investigated. Substrates were prepared by phosphorylation of histone H2b and kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) using cAMP-dependent protein kinase. Two histone phosphatase activities (Mr 170 000 and 520 000) and one kemptide phosphatase activity (Mr 230 000) were found in the cytosolic cell fraction. Histone phosphatase was also present in the particulate fraction, kemptide phosphatase was not. All phosphatase activities were present throughout development. No differences in protein phosphatase activities were found in prespore and prestalk cells. A heat-stable factor which inhibits the particulate and both soluble histone phosphatase activities was isolated.  相似文献   

13.
Glutathione (GSH)-deprived Dictyostelium discoideum accumulates methylglyoxal (MG) and reactive oxygen species (ROS) during vegetative growth. However, the reciprocal effects of the production and regulation of these metabolites on differentiation and cell motility are unclear. Based on the inhibitory effects of γ-glutamylcysteine synthetase (gcsA) disruption and GSH reductase (gsr) overexpression on aggregation and culmination, respectively, we overexpressed GSH-related genes encoding superoxide dismutase (Sod2), catalase (CatA), and Gcs, in D. discoideum. Wild-type KAx3 and gcsA-overexpressing (gcsAOE) slugs maintained GSH levels at levels of approximately 2.1-fold less than the reference GSH synthetase-overexpressing mutant; their GSH levels did not correlate with slug migration ability. Through prolonged KAx3 migration by treatment with MG and H2O2, we found that MG increased after the mound stage in this strain, with a 2.6-fold increase compared to early developmental stages; in contrast, ROS were maintained at high levels throughout development. While the migration-defective sod2- and catA-overexpressing mutant slugs (sod2OE and catAOE) decreased ROS levels by 50% and 53%, respectively, these slugs showed moderately decreased MG levels (36.2 ± 5.8 and 40.7 ± 1.6 nmol g−1 cells wet weight, P < 0.05) compared to the parental strain (54.2 ± 3.5 nmol g−1). Importantly, defects in the migration of gcsAOE slugs decreased MG considerably (13.8 ± 4.2 nmol g−1, P < 0.01) along with a slight decrease in ROS. In contrast to the increase observed in migrating sod2OE and catAOE slugs by treatment with MG and H2O2, the migration of gcsAOE slugs appeared unaffected. This behavior was caused by MG-triggered Gsr and NADPH-linked aldolase reductase activity, suggesting that GSH biosynthesis in gcsAOE slugs is specifically used for MG-scavenging activity. This is the first report showing that MG upregulates slug migration via MG-scavenging-mediated differentiation.  相似文献   

14.
How the collective motion of cells in a biological tissue originates in the behavior of a collection of individuals, each of which responds to the chemical and mechanical signals it receives from neighbors, is still poorly understood. Here we study this question for a particular system, the slug stage of the cellular slime mold Dictyostelium discoideum (Dd). We investigate how cells in the interior of a migrating slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force. Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational results shed light on experimental results concerning the total force exerted by a migrating slug. The model predicts that only cells in contact with the substrate contribute to the translational motion of the slug. Since the model is not based specifically on the mechanical properties of Dd cells, the results suggest that this behavior will be found in many developing systems.  相似文献   

15.
16.
Differentiation of Dictyostelium discoideum cells in suspension culture   总被引:3,自引:0,他引:3  
Differentiation of Dictyostelium discoideum cells in suspension culture is reported, using a medium containing glucose, albumin, cyclic AMP, EDTA and streptomycin in a phosphate buffer. Production of UDPgalactose:polysaccharide transferase, an enzyme specifically present in prespore cells, and the formation of prespore-specific antigens in more than 60% of the cells, are demonstrated. Differentiation in this medium differs from that previously reported with other suspension systems in that (a) cells form only small, amorphous agglomerates, (b) there is an absolute requirement for cyclic AMP and (c) prior formation of loose cell mounds on a solid substratum is essential for subsequent differentiation in this medium. This last requirement indicates that the differentiation process, giving rise to the prespore-specific enzyme and antigen, can be resolved into two distinct stages, one requiring cell contact on a solid substratum and the other proceeding in small agglomerates incubated in the medium. This medium may be useful for elucidating the role of cyclic AMP and cell contact in slime mould development.  相似文献   

17.
18.
Dictyostelium discoideum cells respond to chemoattractants by transient activation of guanylate cyclase. Cyclic GMP is a second messenger that transduces the chemotactic signal. We used an electropermeabilized cell system to investigate the regulation of guanylate cyclase. Enzyme activity in permeabilized cells was dependent on the presence of a nonhydrolysable GTP analogue (e.g., GTPγS), which could not be replaced by GTP, GDP, or GMP. After the initiation of the guanylate cyclase reaction in permeabilized cells only a short burst of activity is observed, because the enzyme is inactivated with a t1.2 of about 15 s. We show that inactivation is not due to lack of substrate, resealing of the pores in the cell membrane, product inhibition by cGMP, or intrinsic instability of the enzyme. Physiological concentrations of Ca2+ ions inhibited the enzyme (half-maximal effect at 0.3 μM), whereas InsP3 had no effect. Once inactivated, the enzyme could only be reactivated after homogenization of the permeabilized cells and removal of the soluble cell fraction. This suggests that a soluble factor is involved in an autonomous process that inactivates guanylate cyclase and is triggered only after the enzyme is activated. The initial rate of guanylate cyclase activity in permeabilized cells is similar to that in intact, chemotactically activated cells. Moreover, the rate of inactivation of the enzyme in permeabilized cells and that due to adaptation in vivo are about equal. This suggests that the activation and inactivation of guanylate cyclase observed in this permeabilized cell system is related to that of chemotactic activation and adaptation in intact cells. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Abstract Oxygen radicals generated during oxidative metabolism participate in chemical reactions resulting in light emission. Chemiluminescence is used therefore to measure their production. We have shown that starvation and heat shock induce chemiluminescence in Dictyostelium discoideum . The peak light emission was found to occur about 4 h after the onset of starvation. The optimum temperature for chemiluminescence by starving amoebae was about 33°C. The heat shock inducibility of chemiluminescence was maximal at the beginning of development. Our results are consistent with suggestions that the product(s) of perturbed mitochondrial metabolism might be intracellular signal(s) controlling gene expression in stressed cells. They also suggest a role for intracellular stress signal(s) in the initiation of development in Dictyostelium by starvation.  相似文献   

20.
Both discoidin I and discoidin II have been detected on the surface of aggregating (10 h developmental stage) cells of Dictyostelium discoideum NC4 by radioiodination of the cell-surface followed by immunoprecipitation and sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis. Approx. 92% of cell-surface discoidin I and 72% of cell-surface discoidin II can be eluted with 0.5 M-galactose, showing that most of each endogenous lectin is not present as integral membrane protein but rather is bound to cell-surface discoidin receptors. Two-dimensional polyacrylamide-gel-electrophoretic analysis of discoidin I suggests that the native tetramer may be a hetero-multimer composed of both Ia and Ib subunits. Cell-surface discoidin I also contains both types of subunit, but it is not clear whether both subunits have corresponding cell-surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号