首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The postembryonic development of serotonin-immunoreactive (5-HTi) neurons was studied in the optic lobe of the blowfly. In the adult fly there are 24 5-HTi neurons invading each optic lobe. The perikarya of two of these neurons are situated in the dorso-caudal part of the protocerebrum (LBO-5HT neurons; large bilateral optic lobe 5-HTi neurons). The cell bodies of the remaining 22 neurons are located anteriorly at the medial base of the medulla (2 innervating the lobula, LO-5HT neurons; and 20 neurons innervating the medulla, ME-5HT neurons). The two central neurons (LBO-5HT neurons) are derived from metamorphosing larval neurons, while the ME- and LO-5HT neurons are imaginai optic lobe neurons differentiating during pupal development.The 5-HTi neurons of the optic lobe seem to have different ancestors. The LBO-5HT neurons are probably derived from segmental protocerebral neuroblasts, whereas the ME-and LO-5HT neurons are most likely derived from the inner optic anlage. The first 5-HTi fibers to reach the imaginal optic lobes are seen in the late third instar larva and are derived from the LBO-5HT neurons. The first ME- and LO-5HT neurons become immunoreactive at 24 h (10%) pupal development. At about 96 h (40%) of pupal development all the 5-HTi neurons of the optic lobes have differentiated and attained their basic adult morphology. The further development mainly entails increase in volume of arborizations and number of finer processes. The differentiation and outgrowth of 5-HTi processes follows that of, e.g., columnar neurons in the optic lobe neuropils. Hence, 5-HTi processes invade neuropil relatively late in the differentiation of the optic lobe.  相似文献   

2.
T S Gray 《Peptides》1983,4(5):663-668
Three types of somatostatin-immunoreactive neurons are described in the lateral nucleus of the rat amygdala. These three types closely correspond to neurons previously reported in Golgi preparations of the lateral nucleus. Class I somatostatin neurons have triangular- or piriform-shaped somata with large primary dendrites and spiny secondary dendrites. Class II somatostatin neurons have small to medium-sized oval perikarya and are fusiform or multipolar in shape. Class III somatostatin neurons have small spheroid somata with small thinner relatively aspinous dendrites. Class I somatostatin neurons give rise to axons which project outside the lateral nucleus whereas class II and III neurons innervate other somatostatin-positive and non-somatostatin neurons within the lateral nucleus. Somatostatin neurons within the lateral nucleus are hypothesized to function as part of a network of somatostatin neurons extending from cortical regions through the amygdala to basal telencephalic and lower brain stem regions.  相似文献   

3.
Summary The distributions within the coeliac ganglion of different chemically coded subgroups of noradrenaline neurons, and the relationships between these neurons and nerve fibres projecting to the ganglion from the intestine, have been assessed quantitatively by use of an immunohistochemical double-staining method. Noradrenaline (NA) neurons made up 99% of all cell bodies. Of these, 21% were also reactive for somatostatin (NA/SOM neurons), 53% were also reactive for NPY (NA/NPY neurons), and 26% were not reactive for either peptide. NA neurons without reactivity for any of the peptides whose localization was tested have been designated NA/-. A small percentage, about 1%, of neurons were reactive for both NPY and SOM. The three major types of NA neurons were arranged in clumps or ribbons throughout the ganglia, with a tendency for NA/SOM neurons to be medial and NA/NPY neurons to be lateral in the ganglia. A small group of neurons (<1%) encoded with dynorphin, NPY and vasoactive intestinal peptide (VIP) was encountered. VIP-immunoreactive nerve terminals, projecting to the ganglion from cell bodies in the intestine, ended around NA/SOM and NA/neurons but not around NA/NPY neurons. Thus, the VIP axons from the intestine end selectively around neurons that modify intestinal function (NA/SOM and NA/-neurons) but not around neurons, the terminals of which supply blood vessels (NA/NPY neurons).  相似文献   

4.
The continuing and even expanding use of genetically modified mice to investigate the normal physiology and development of the enteric nervous system and for the study of pathophysiology in mouse models emphasises the need to identify all the neuron types and their functional roles in mice. An investigation that chemically and morphologically defined all the major neuron types with cell bodies in myenteric ganglia of the mouse small intestine was recently completed. The present study was aimed at the submucosal ganglia, with the purpose of similarly identifying the major neuron types with cell bodies in these ganglia. We found that the submucosal neurons could be divided into three major groups: neurons with vasoactive intestinal peptide (VIP) immunoreactivity (51% of neurons), neurons with choline acetyltransferase (ChAT) immunoreactivity (41% of neurons) and neurons that expressed neither of these markers. Most VIP neurons contained neuropeptide Y (NPY) and about 40% were immunoreactive for tyrosine hydroxylase (TH); 22% of all submucosal neurons were TH/VIP. VIP-immunoreactive nerve terminals in the mucosa were weakly immunoreactive for TH but separate populations of TH- and VIP-immunoreactive axons innervated the arterioles in the submucosa. Of the ChAT neurons, about half were immunoreactive for both somatostatin and calcitonin gene-related peptide (CGRP). Calretinin immunoreactivity occurred in over 90% of neurons, including the VIP neurons. The submucosal ganglia and submucosal arterioles were innervated by sympathetic noradrenergic neurons that were immunoreactive for TH and NPY; no VIP and few calretinin fibres innervated submucosal neurons. We conclude that the submucosal ganglia contain cell bodies of VIP/NPY/TH/calretinin non-cholinergic secretomotor neurons, VIP/NPY/calretinin vasodilator neurons, ChAT/CGRP/somatostatin/calretinin cholinergic secretomotor neurons and small populations of cholinergic and non-cholinergic neurons whose targets have yet to be identified. No evidence for the presence of type-II putative intrinsic primary afferent neurons was found. This work was supported by a grant from the National Health and Medical Research Council of Australia (grant no. 400020) and an Australian Research Council international linkage grant (no. LZ0882269) for collaboration between the Melbourne and Bologna laboratories.  相似文献   

5.
Anatomical study of neurons projecting to the retrocerebral complex of the adult blow fly, Protophormia terraenovae, was done by NiCl2 filling and immunocytochemistry. Retrograde filling through the cardiac-recurrent nerve labeled three groups of neurons in the brain/subesophageal ganglion: (1) paramedial clusters of the pars intercerebralis, (2) neurons in each pars lateralis, and (3) neurons in the subesophageal ganglion. The pars intercerebralis neurons send prominent axons into the median bundle and exit from the brain via the contralateral nervus corporis cardiaci. Based on the projection pattern, two types of the pars lateralis neurons can be distinguished: the most lateral pairs of neurons contralaterally extend through the posterior lateral tract and the remainder ipsilaterally extend through the posterior lateral tract. The neurons in the subesophageal ganglion run through the contralateral nervus corporis cardiaci. The dendritic arborization of the pars intercerebralis and pars lateralis neurons is restricted to the superior protocerebral neuropil and to the anterior neuropil of the subesophageal ganglion where the neurons in the subesophageal ganglion also project. Retrograde filling from the corpus allatum indicated that the pars lateralis neurons and a few pars intercerebralis neurons project to the corpus allatum, but that the neurons in the subesophageal ganglion do not. Orthograde filling from the pars intercerebralis and staining by paraldehyde-thionin/paraldehyde-fuchsin indicated that the pars intercerebralis neurons project primarily to the corpus cardiacum/hypocerebral ganglion complex. Immunostaining with a polyclonal antiserum against diapause hormone, a member of the FXPRLamide family, suggests that some of the subesophageal ganglion neurons contain FXPRLamide-like peptides.  相似文献   

6.
Summary Receptive field (RF) properties of binocular neurons lying in the rostral part of the optic tectum of the frog (Rana esculenta) were studied electrophysiologically using conventional visual stimuli. They were classified into five groups: group 1 neurons have indefinite RF; group 2 neurons are total-field (T6) neurons; group 3 neurons have RFs covering a quadrant of the frontal visual field; group 4 neurons resemble T 1(1) and T 1(3) subclasses described earlier; and finally group 5 neurons look like small-field binocular neurons and are called T7(B). Moreover, RF disparity measurements conducted in all groups suggest that group 4 neurons support the estimation of binocular distance. This problem is discussed.Abbreviation RF receptive field  相似文献   

7.
Summary The shapes of myenteric neurons in the guineapig small intestine were determined after injecting living neurons with the dye Lucifer yellow via a microelectrode. The cells were fixed and the distribution of Lucifer yellow rendered permanent by an immunohistochemical method. Each of 204 nerve cells was examined in whole-mount preparations of the myenteric plexus and drawn using a camera lucida at 1250 x magnification. Four cell shapes were distinguished: (1) neurons with several long processes corresponding to type II of Dogiel; (2) neurons with a single long process and lamellar dendrites corresponding to type I of Dogiel; (3) neurons with numerous filamentous dendrites; and (4) small neurons with few processes. About 15% of the neurons could not be placed into these classes or into any single class. The type II neurons (39% of the sample) had generally smooth somata and up to 7 (average 3.3) long processes, most of which ran circumferentially. Dogiel type I neurons (34% of sampled neurons) had characteristic lamellar dendrites, i.e., broad dendrites that were flattened in the plane of the plexus. The filamentous neurons (7% of the sample), had, on average, 14 fine processes up to about 50 m in length. Small neurons with smooth outlines and a few fine processes made up 5% of the neurons encountered. We conclude that myenteric neurons that have been injected with dye can be separated into morphologically distinct classes and that the different morphological classes probably correspond to different functional groupings of neurons.  相似文献   

8.
The number of GABAergic neurons as determined by GAD immunocytochemistry and total neurons as determined from Nissl preparations were counted and classified at the light microscopic level in the inferior colliculus (IC) of the genetically epilepsy prone rat (GEPR) and the non-epileptic Sprague-Dawley (SD) strain of rat. GAD-positive neurons are abundant in the IC and a significant increase in the number of GAD-positive neurons occurs in the GEPR as compared to the SD in all three subdivisions. However, the most pronounced difference occurs in the ventral lateral portion of the central nucleus, where there is a selective increase in the small (200%) and medium-sized (90%) GABAergic somata (10-15 microns in diameter and 15-25 microns in diameter, respectively). As determined from Nissl preparations an increase in total numbers of neurons also occurs. Thus, a 100% increase in the number of small neurons and a 30% increase in the number of medium-sized neurons occur in the adult GEPR as compared to the SD rat. A statistically significant increase in the numbers of small neurons also occurred in the IC of the young GEPR. At 4 days of age, a 55% increase in the number of small neurons was found, and at 10 days of age this increase was 105%. The numbers of the medium and large neurons were similar in the older group of rats. These data suggest that the increase in cell number observed in the adult GEPR is not compensatory to the seizure activity, but may either be genetically programmed or be a failure of cell death. Based on other studies of genetic models of epilepsy, we propose that the additional GABAergic neurons may disinhibit excitatory projection neurons in the IC.  相似文献   

9.
Previous studies have shown that most neurons in cultures established during the early stages of neurogenesis in the embryonic mouse trigeminal ganglion are supported by BDNF whereas most neurons cultured from older ganglia survive with NGF. To ascertain to what extent these developmental changes in neurotrophin responsiveness result from separate phases of generation of BDNF- and NGF-responsive neurons or from a developmental switch in the response of neurons from BDNF to NGF, we administered BrdU to pregnant mice at different stages of gestation to identify neurons born at different times and studied the survival of labelled neurons in dissociated cultures established shortly after BrdU administration. Most early-generated neurons responded to BDNF, neurons generated at intermediate times responded to both factors and late-generated neurons responded to NGF, indicating that there are overlapping phases in the generation of BDNF- and NGF-responsive neurons and that late-generated neurons do not switch responsiveness from BDNF to NGF. To ascertain if early-generated neurons do switch their response to neurotrophins during development, we used repeated BrdU injection to label all neurons generated after an early stage in neurogenesis and studied the neurotrophin responsiveness of the unlabelled neurons in cultures established after neurogenesis had ceased. The response of these early-generated neurons had decreased to BDNF and increased to NGF, indicating that at least a proportion of early-generated neurons switch responsiveness to neurotrophins in vivo. Because early-generated neurons do not switch responsiveness from BDNF to NGF in long-term dissociated cultures, we cultured early trigeminal ganglion explants with and without their targets for 24 hours before establishing dissociated cultures. This period of explant culture was sufficient to enable many early-generated neurons to switch their response from BDNF to NGF and this switch occurred irrespective of presence of target tissue. Our findings conclusively demonstrate for the first time that individual neurons switch their neurotrophin requirements during development and that this switch depends on cell interactions within the ganglion. In addition, we show that there are overlapping phases in the generation of BDNF- and NGF-responsive neurons in the trigeminal ganglion.  相似文献   

10.
The morphology of visual interneurons in the tiger beetle larva was identified after recording their responses. Stained neurons were designated as either medulla or protocerebral neurons according to the location of their cell bodies. Medulla neurons were further subdivided into three groups. Afferent medulla neurons extended processes distally in the medulla neuropil and a single axon to the brain through the optic nerve. They received their main input from stemmata on the ipsilateral side. Two distance-sensitive neurons, near-by sensitive and far-sensitive neurons, were also identified. Atypical medulla neurons extended their neurites distally in the medulla and proximally to the brain, as afferent medulla neurons, but their input patterns and the shapes of their spikes differed from afferent neurons. Protocerebral neurons sent a single axon to the medulla neuropil. They spread collateral branches in the posterior region of the protocerebrum on its way to the medulla neuropil. They received main input from stemmata on the contralateral side. Medulla intrinsic neurons did not extend an axon to the brain, and received either bilateral or contralateral stemmata input only. The input patterns and discharge patterns of medulla neurons are discussed with reference to their morphology.  相似文献   

11.
Summary The octavo-lateral efferent system of several anuran species was studied by means of retrograde transport of horseradish peroxidase. This system is organized similarly in all larval anurans and in all adult aglossids. All have two groups of efferent neurons in the nucleus reticularis medialis between the VIIIth and the IXth motor nucleus. The caudal group consists of efferent neurons that supply the posterior lateral-line nerve (NLLp) and a considerably smaller group of neurons supplying both the NLLp and the anterior lateral-line nerve (NLLa). The rostral group is composed of efferent neurons supplying the NLLa, neurons projecting to the inner ear and neurons supplying both the inner ear and the NLLa. Efferent neurons of the VIIIth cranial nerve exhibit a rostrocaudal cytoarchitectonic differentiation. Caudal perikarya, which are rounder in shape than those of the rostral part, have a dendritic projection to the superior olive. It is suggested that this differentiation reflects a functional differentiation of acoustic and vestibular efferent neurons.Labeled neurons were ipsilateral to the site of application of HRP. None were found in the vestibular nuclei or in the cerebellum.Efferent axons projecting to neuromasts of the NLLa leave the medulla with the VIIth nerve, axons projecting to neuromasts of the NLLp exit via the IXth nerve. Cell counts and the observation of axonal branching revealed that efferent units of both the lateral-line and the VIIIth-nerve system supply more than one receptor organ. In contrast to the lateral-line system, dendrites of efferent neurons of the VIIIth nerve project dorsally onto its nuclei, and afferents of the VIIIth nerve project onto efferent neurons. These structures most probably represent a feedback loop between the afferent and efferent systems of the VIIIth cranial nerve.  相似文献   

12.
Granata AR 《Neuro-Signals》2004,13(5):241-247
We used an intracellular recording technique in vitro to investigate the effects of moxonidine on neurons in the rostral ventrolateral medulla (RVLM) with electrophysiological properties similar to premotor sympathetic neurons in vivo. These neurons were classified as firing regularly and irregularly, according to previous reports. Moxonidine is a sympathoinhibitory and antihypertensive agent that is thought to be a ligand of alpha(2)-adrenergic receptors and imidazoline type-1 receptors in the RVLM. Moxonidine (2-10 microM) was applied to the perfusate on 4 irregularly firing neurons, and 2 regularly firing neurons. Moxonidine (2 microM) produced only minor depolarization in 2 of these neurons. However, on 4 tested neurons, moxonidine (10 microM) elicited a profound inhibitory effect with hyperpolarization (near -20 mV); these neurons practically ceased firing. These changes were partially reversible. The results would indicate that neurons in the RVLM, recorded in vitro and with similar electrophysiological characteristics to a group of neurons previously identified in vivo in the same bulbar region as barosensitive premotor sympathetic neurons, can be modulated by imidazoline-derivative adrenergic agonists. These results could help to understand the hypotensive effects of moxonidine.  相似文献   

13.
Rieger V  Harzsch S 《Tissue & cell》2008,40(2):113-126
The embryonic development of neurotransmitter systems in crustaceans so far is poorly understood. Therefore, in the current study we monitored the ontogeny of histamine-immunoreactive neurons in the ventral nerve cord of the Marbled Crayfish, an emerging crustacean model system for developmental studies. The first histaminergic neurons arise around 60% of embryonic development, well after the primordial axonal scaffold of the ventral nerve cord has been established. This suggests that histaminergic neurons do not serve as pioneer neurons but that their axons follow well established axonal tracts. The developmental sequence of the different types of histaminergic neurons is charted in this study. The analysis of the histaminergic structures is also extended into adult specimens, showing a persistence of embryonic histaminergic neurons into adulthood. Our data are compared to the pattern of histaminergic neurons in other crustaceans and discussed with regard to our knowledge on other aspects of neurogenesis in Crustacea. Furthermore, the possible role of histaminergic neurons as characters in evolutionary considerations is evaluated.  相似文献   

14.
Using the rapid Golgi technique four types of neurons have been observed in the paraventricular nucleus : magnocellular neurosecretory neurons, parvocellular neurons with "extrahypophyseal" axon, parvocellular neurons with recurrent axon (possibly inhibitory interneurons) and neurons of reticular type.  相似文献   

15.
Summary The digestive tract of the guinea-pig, from the esophagus to the rectum, was examined in detail to determine the distribution and relative abundances of neurons in these organs that project to the coeliac ganglion and the routes by which their axons reach the ganglion. A retrogradely transported neuronal marker, Fast Blue, was injected into the coeliac ganglion. The esophagus, stomach, gallbladder, pancreas, duodenum, small intestine, caecum, proximal colon, distal colon and rectum were analysed for labelled neurons. Retrogradely labelled neurons were found only in the myenteric plexus of these organs, and in the pancreas. No labelled neurons were found in the gallbladder or the fundus of the stomach, or in the submucous plexus of any region. A small number of labelled neurons was found in the gastric antrum. An increasing density of labelled neurons was found along the duodenum. Similarly, an increasing density of labelled neurons was found from proximal to distal along the jejuno-ileum. However, the greates densities of labelled neurons were in the large intestine. many labelled neurons were found in the caecum, including a high density underneath its taeniae. An increasing density of labelled neurons was found along the length of the proximal colon, and labelled neurons were found in the distal colon and rectum. In total, more labelled cell bodies occurred in the large intestine than in the small intestine. The routes taken by the axons of viscerofugal neurons were ascertained by lesioning the nerve bundles which accompany vessels supplying regions of the digestive tract. Viscerofugal neurons of the caecum project to the coeliac ganglion via the ileocaeco-colic nerves; neurons in the proximal colon project to the ganglion via the right colic nerves, and neurons in the distal colon project to the ganglion via the mid colic and intermesenteric nerves. Neurons in the rectum project to the coeliac ganglion via the intermesenteric nerves. These nerves (except for the intermesenterics) all join nerve bundles from the small intestine that follow the superior mesenteric artery. All viscerofugal neurons of the caecum were calbindin-immunoreactive (calb-IR) and 94% were immunoreactive for vasoactive intestinal peptide (VIP-IR). In the proximal colon, 49% of labelled neurons were calb-IR and 85% were VIP-IR. In the distal colon, 80% of labelled neurons were calb-IR and 71% were VIP-IR.  相似文献   

16.
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5% of the neurons in the submucosal plexus in all segments of the guinea pig intestinal tract as determined by double staining with anti-human neuronal protein antibody. PAFR IR was found in 6.1% of the neurons with IR for calbindin, 35.8% of the neurons with IR for neuropeptide Y (NPY), 30.6% of the neurons with IR for choline acetyltransferase (ChAT), and 1.96% of the neurons with IR for vasoactive intestinal peptide (VIP) in the submucosal plexus. PAFR IR was also found in 1.5% of the neurons with IR for calbindin, 51.1% of the neurons with IR for NPY, and 32.9% of the neurons with IR for ChAT in the myenteric plexus. In the submucosal plexus, exposure to PAF (200-600 nM) evoked depolarizing responses (8.2 +/- 3.8 mV) in 12.4% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.5% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology, whereas in the myenteric preparations, depolarizing responses were elicited by a similar concentration of PAF in 9.5% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.0% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology. The results suggest that subgroups of secreto- and musculomotor neurons in the submucosal and myenteric plexuses express PAFR. Coexpression of PAFR IR with ChAT IR in the myenteric plexus and ChAT IR and VIP IR in the submucosal plexus suggests that PAF, after release in the inflamed bowel, might act to elevate the excitability of submucosal secretomotor and myenteric musculomotor neurons. Enhanced excitability of motor neurons might lead to a state of neurogenic secretory diarrhea.  相似文献   

17.
The granular layer of the cerebellar cortex is composed of two groups of neurons, the granule neurons and the so-called large neurons. These latter include the neuron of Golgi and a number of other, lesser known neuron types, generically indicated as non-traditional large neurons. In the last few years, owing to the development of improved histological and histochemical techniques for studying morphological and chemical features of these neurons, some non-traditional large neurons have been morphologically well characterized, namely the neuron of Lugaro, the synarmotic neuron, the unipolar brush neuron, the candelabrum neuron and the perivascular neuron. Some types of non-traditional large neurons may be involved in the modulation of cortical intrinsic circuits, establishing connections among neurons distributed throughout the cortex, and acting as inhibitory interneurons (i.e., Lugaro and candelabrum neurons) or as excitatory ones (i.e., unipolar brush neuron). On the other hand, the synarmotic neuron could be involved in extrinsic circuits, projecting to deep cerebellar nuclei or to another cortex regions in the same or in a different folium. Finally, the perivascular neuron may intervene in the intrinsic regulation of the cortex microcirculation.  相似文献   

18.
1. Echo delay is the primary cue used by echolocating bats to determine target range. During target-directed flight, the repetition rate of pulse emission increases systematically as range decreases. Thus, we examined the delay tuning of 120 neurons in the auditory cortex of the bat, Myotis lucifugus, as repetition rate was varied. 2. Delay sensitivity was exhibited in 77% of the neurons over different ranges of pulse repetition rates (PRRs). Delay tuning typically narrowed and eventually disappeared at higher PRRs. 3. Two major types of delay-sensitive neurons were found: i) delay-tuned neurons (59%) had a single fixed best delay, while ii) tracking neurons (22%) changed their best delay with PRR. 4. PRRs from 1-100/s were represented by the population of delay-sensitive neurons, with the majority of neurons delay-sensitive at PRRs of at least 10-20/s. Thus, delay-dependent neurons in Myotis are most active during the search phase of echolocation. 5. Delay-sensitive neurons that also responded to single sounds were common. At PRRs where delay sensitivity was found, the responses to single sounds were reduced and the responses to pulse-echo pairs at particular delays were greater than the single-sound responses. In facilitated neurons (53%), the maximal delay-dependent response was always larger than the best single-sound responses, whereas in enhanced neurons (47%), these responses were comparable. The presence of neurons that respond maximally to single sounds at one PRR and to pulse-echo pairs with particular echo delays at other PRRs suggests that these neurons perform echo-ranging in conjunction with other biosonar functions during target pursuit.  相似文献   

19.
To discriminate "blood-contacting neurons" within the brain of the eel, Evans blue (EB) was injected intraperitoneally. After five days, six brain areas were externally stained blue with the dye; the saccus dorsalis (SD), the epiphysis (E), the area postrema (AP), the posterior part of the magnocellular preoptic nucleus (PM), the pituitary (Pit), and the saccus vasculosus (SV). Among the EB-positive area, some cells in the PM, the anterior tuberal nucleus (NAT) and the AP were discriminated as the "blood-contacting neurons" histologically, whereas EB-positive neurons were not detected in the SD, the E, the Pit and the SV regions. In the PM, most EB-positive neurons (90 %) were immunoreactive to vasotocin (AVT) antibody, indicating that these neurons are vasotocinergic. The remaining EB-positive neurons (10 %) were not immunoreactive to ANG II and tyrosine hydroxylase (TH) antibodies. Although some neurons in the PM were immunoreactive to ANG II antibody, they were EB-negative. In contrast, almost all EB-positive neurons in the AP showed TH-like immunoreactivity (-lir), indicating that these neurons utilize catecholamine(s) as a neurotransmitter. The EB-positive neurons in the NAT were not immunoreactive to AVT, ANG II and TH antibodies, whereas some neurons without EB-staining showed ANG II-lir. Possible roles of these neurons in regulating drinking behavior in eels are discussed.  相似文献   

20.
The brain is a network system in which excitatory and inhibitory neurons keep activity balanced in the highly non-random connectivity pattern of the microconnectome. It is well known that the relative percentage of inhibitory neurons is much smaller than excitatory neurons in the cortex. So, in general, how inhibitory neurons can keep the balance with the surrounding excitatory neurons is an important question. There is much accumulated knowledge about this fundamental question. This study quantitatively evaluated the relatively higher functional contribution of inhibitory neurons in terms of not only properties of individual neurons, such as firing rate, but also in terms of topological mechanisms and controlling ability on other excitatory neurons. We combined simultaneous electrical recording (~2.5 hours) of ~1000 neurons in vitro, and quantitative evaluation of neuronal interactions including excitatory-inhibitory categorization. This study accurately defined recording brain anatomical targets, such as brain regions and cortical layers, by inter-referring MRI and immunostaining recordings. The interaction networks enabled us to quantify topological influence of individual neurons, in terms of controlling ability to other neurons. Especially, the result indicated that highly influential inhibitory neurons show higher controlling ability of other neurons than excitatory neurons, and are relatively often distributed in deeper layers of the cortex. Furthermore, the neurons having high controlling ability are more effectively limited in number than central nodes of k-cores, and these neurons also participate in more clustered motifs. In summary, this study suggested that the high controlling ability of inhibitory neurons is a key mechanism to keep balance with a large number of other excitatory neurons beyond simple higher firing rate. Application of the selection method of limited important neurons would be also applicable for the ability to effectively and selectively stimulate E/I imbalanced disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号