首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD+-linked primary and secondary alcohol dehydrogenase activity was detected in cell-free extracts of propane-grown Rhodococcus rhodochrous PNKb1. One enzyme was purified to homogeneity using a two-step procedure involving DEAE-cellulose and NAD-agarose chromatography and this exhibited both primary and secondary NAD+-linked alcohol dehydrogenase activity. The Mr of the enzyme was approximately 86,000 with subunits of Mr 42,000. The enzyme exhibited broad substrate specificity, oxidizing a range of short-chain primary and secondary alcohols (C2–C8) and representative cyclic and aromatic alcohols. The pH optimum was 10. At pH 6.5, in the presence of NADH, the enzyme catalysed the reduction of ketones to alcohols. The K m values for propan-1-ol, propan-2-ol and NAD were 12 mM, 18 mM and 0.057 mM respectively. The enzyme was inhibited by metal-complexing agents and iodoacetate. The properties of this enzyme were compared with similar enzymes in the current literature, and were found to be significantly different from those thus far described. It is likely that this enzyme plays a major role in the assimilation of propane by R. rhodochrous PNKb1.Abbreviations HPLC high performance liquid chromatography - DEAE diethyl amino ethyl - IEF isoelectrofocusing - NTG nitrosoguanidine - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - pI isoelectric point  相似文献   

2.
Muconate cycloisomerase (EC 5.5.1.1) and chloromuconate cycloisomerase (EC 5.5.1.7) were purified from extracts of Rhodococcus erythropolis 1CP cells grown with benzoate or 4-chlorophenol, respectively. Both enzymes discriminated between the two possible directions of 2-chloro-cis, cis-muconate cycloisomerization and converted this substrate to 5-chloromuconolactone as the only product. In contrast to chloromuconate cycloisomerases of gram-negative bacteria, the corresponding R. erythropolis enzyme is unable to catalyze elimination of chloride from (+)-5-chloromuconolactone. Moreover, in being unable to convert (+)-2-chloromuconolactone, the two cycloisomerases of R. erythropolis 1CP differ significantly from the known muconate and chloromuconate cycloisomerases of gram-negative strains. The catalytic properties indicate that efficient cycloisomerization of 3-chloro- and 2,4-dichloro-cis,cis-muconate might have evolved independently among gram-positive and gram-negative bacteria.  相似文献   

3.
NAD+-dependent propan-1-ol and propan-2-ol dehydrogenase activities were detected in cell-free extracts of Rhodococcus rhodochrous PNKb1 grown on propane and potential intermediates of propane oxidation. However, it was unclear whether this activity was mediated by one or more enzymes. The isolation of mutants unable to utilize propan-1-ol (alcA-) or propan-2-ol (alcB-) as sole carbon and energy sources demonstrated that these substrates are metabolized by different alcohol dehydrogenases. These mutants were also unable to utilize propane as a growth substrate indicating that both alcohols are intermediates of propane metabolism. Therefore, propane is metabolized by terminal and sub-terminal oxidation pathways. Westernblot analysis demonstrated that a previously purified NAD+-dependent propan-2-ol dehydrogenase (Ashraf and Murrell 1990) was only synthesized after growth on propane and sub-terminal oxidation intermediates (but not acetone), and not propan-1-ol or terminal oxidation intermediates. Therefore, our evidence suggest that another dehydrogenase is involved in the metabolism of propan-1-ol and this agrees with the isolation of the alcA- and alcB- phenotypes. The previously characterized NAD+-dependent propan-2-ol dehydrogenase from R. rhodochrous PNKb1 is highly conserved amongst members of the propane-utilizing Rhodococcus-Nocardia complex.  相似文献   

4.
Whole cells of the bacterium Rhodococcus rhodochrous LL100-21, which had been grown on benzonitrile to induce the nitrilase enzyme, converted benzonitrile to benzohydroxamic acid in the presence of hydroxylamine.  相似文献   

5.
Quinate grown cells of Rhodococcus rhodochrous N75 metabolized both quinate and shikimate via protocatechuate to succinate and acetyl CoA. The initial enzyme of the hydroaromatic pathway, quinate dehydrogenase was purified 188-fold to electrophoretic homogeneity. The enzyme is a monomer with a native relative molecular mass of 44,000 and is NAD-dependent. The enzyme is highly stereospecific with regard to hydroaromatic substrates, oxidising only the axial hydroxyl group at C-3 of (-)-isomers of quinate, shikimate, dihydroshikimate and t-3,t-4-dihydroxycyclohexane-c-1-carboxylate, but shows activity with several NAD analogues.  相似文献   

6.
We sought the optimum conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. The use of isovaleronitrile or isobutyronitrile as an inducer greatly enhanced benzonitrilase formation. When Rhodococcus rhodochrous J1 was cultivated at 28°C for 96 h in a medium consisting of 0.1 ml of isovaleronitrile, 0.5 g of polypeptone, 0.3 g of malt extract, 0.3 g of yeast extract and 1 g of glycerol per 100 ml of tap water (pH 7.2), and isovaleronitrile was fed twice at the concentrations of 0.1% (v/v) and 0.2% (v/v) at 55 h and 77 h, respectively, during the course of cultivation, the enzyme activity in the culture broth reached approximately 3,100-times higher than the initially obtained level.  相似文献   

7.
As the third-generation biocatalyst for industrial production of acrylamide, the superiority of Rhodococcus rhodochrous J1 nitrile hydratase was demonstrated in comparison with other acrylamide-producing bacteria. R. rhodochrous J1 enzyme is much more heat stable and more tolerant to a high concentration of acrylonitrile than Pseudomonas chlororaphis B23 and Brevibacterium R312 enzymes. The J1 enzyme is peculiar in its extremely high tolerance to acrylamide. The hydration reaction of acrylonitrile catalysed by J1 cells proceeded even in the presence of 50% (w/v) acrylamide. The tolerance of J1 enzyme to various organic solvents such as n-propanol and isopropanol was prominent. Using R. rhodochrous J1 resting cells, the accumulation reaction was carried out by feeding acrylonitrile to maintain a level of 6%. After 10 h incubation, the accumulation of acrylamide was approximately 65.6% (w/v) at 10°C, 56.7% (w/v) at 15°C, and 56.0 (w/v) at 20°C. The high stability, high catalytic efficiency and other outstanding features of the J1 enzyme are analysed and discussed. Correspondence to: T. Nagasawa  相似文献   

8.
Rhodococcus rhodochrous J1, of which the high-Mr nitrile hydratase has been used for the industrial manufacture of acrylamide from acrylonitrile, produced at least two amidases differing in substrate specificity, judging from the effects of various amides on amidase activity in this strain. These amidases seemed to be inducible enzymes depending on amide compounds.  相似文献   

9.
Study of the conversion of chlorophenols byRhodococcus opacus 1G,R. rhodnii 135,R. rhodochrous 89, andR. opacus 1cp disclosed the dependence of the conversion rate and pathway on the number and position of chlorine atoms in the aromatic ring. The most active chlorophenol converter, strainR. opacus 1cp, grew on each of the three isomeric monochlorophenols and on 2,4-dichlorophenol; the rate of growth decreased from 4-chlorophenol to 3-chlorophenol and then to 2-chlorophenol. The parameters of growth on 2,4-dichlorophenol were the same as on 3-chlorophenol. None of the strains studied utilized trichlorophenols. A detailed study of the pathway of chlorophenol transformation showed that 3-chloro-, 4-chloro-, and 2,4-dichlorophenol were utilized by the strains via a modifiedortho-pathway. 2-Chlorophenol and 2,3-dichlorophenol were transformed by strainsR. opacus 1cp andR. rhodochrous 89 via corresponding 3-chloro- and 3,4-dichlorocatechols, which were then hydroxylated with the formation of 4-chloropyrogallol and 4,5-dichloropyrogallol; this route had not previously been described in bacteria. Phenol hydroxylase ofR. opacus 1G exhibited a previously undescribed catalytic pattern, catalyzing oxidative dehalogenation of 2,3,5-trichlorophenol with the formation of 3,5-dichlorocatechol but not hydroxylation of the nonsubstituted position 6.  相似文献   

10.
Butyramide is an important chemical commodity, which is used for the synthesis of hydroxamic acids and electrorheological fluids and for the preparation of β-amodoorganotin compounds. The nitrile hydratase (Nhase) of Rhodococcus rhodochrous PA-34 catalyzed the conversion of butyronitrile to butyramide. The maximum Nhase activity [18 U/mg dry cell weight (dcw)] of whole cells of R. rhodochrous PA-34 was observed at pH 7.0 with 10% (v/v) butyronitrile and 1 mg cells (dcw)/ml reaction mixture at 10°C. The cells of R. rhodochrous PA-34 retained almost 50% activity when incubated for 1 h in the presence of 85% (v/v) butyronitrile. A yield of 597 g of butyramide (6.8 M) was obtained using 60% (v/v) butyronitrile, 1 g cells (dry weight) in a 1-l batch reaction at 10°C for 6 h.  相似文献   

11.
Rhodococcus rhodochrous PY11 (DSM 101666) is able to use 2-hydroxypyridine as a sole source of carbon and energy. By investigating a gene cluster (hpo) from this bacterium, we were able to reconstruct the catabolic pathway of 2-hydroxypyridine degradation. Here, we report that in Rhodococcus rhodochrous PY11, the initial hydroxylation of 2-hydroxypyridine is catalyzed by a four-component dioxygenase (HpoBCDF). A product of the dioxygenase reaction (3,6-dihydroxy-1,2,3,6-tetrahydropyridin-2-one) is further oxidized by HpoE to 2,3,6-trihydroxypyridine, which spontaneously forms a blue pigment. In addition, we show that the subsequent 2,3,6-trihydroxypyridine ring opening is catalyzed by the hypothetical cyclase HpoH. The final products of 2-hydroxypyridine degradation in Rhodococcus rhodochrous PY11 are ammonium ion and α-ketoglutarate.  相似文献   

12.
Microbial desulfurization of solubilized coal   总被引:5,自引:0,他引:5  
Microbial desulfurization of low rank coal by Rhodococcus rhodochrous IGTS8 was investigated using three different pretreated coal samples. Solubilized coal was desulfurized more efficiently than hard coal and more sulfur was extracted from biologically solubilized coal than from chemically solubilized coal. Microbial desulfurization combined with biological solubilization removed 75% of the total sufur while the microbial desulfurization combined with chemical solubilization removed 63%.  相似文献   

13.
Whole cells and cell-free extracts derived from Rhodococcus rhodochrous NCIMB 11216 were shown to hydrolyse both aliphatic and aromatic nitriles, when the organism had been grown on either propionitrile or benzonitrile as the source of carbon and nitrogen. Whole cell suspensions and cell-free extracts derived from bacteria grown on either substrate were able to biotransform R-(-),S-(+)-2-methylbutyronitrile. The S-(+) enantiomer was biotransformed more rapidly than the the R-(-) enantiomer. For whole cell biotransformations at 30°C, the maximum enantiomeric excess (ee) of the remaining R-(-)-2-methylbutyronitrile was 93% when 70% of the R-(-) enantiomer had been converted to the product, 2-methylbutyric acid. For the corresponding biotransformation at 4°C, there was an ee of 93% for the residual R-(-) enantiomer of the substrate when only 60% of it had been converted to product. For biotransformations by cell-free extracts at 30°C the 2-methylbutyric acid product had an ee of 17% for the S-(+) enantiomer at the time of optimal ee for the remaining R-(-) enantiomer of the substrate. In contrast, when the reaction was carried out by whole cells, the ee for the product acid was 0.36%. This was probably due to further, non-selective metabolism of the acid, which was especially significant at the beginning of the reaction. At both temperatures, the ee for the S-(+) enantiomer of 2-methylbutyric acid was at a maximum in the early stage of the biotransformation; for example, at 4°C the maximum detectable ee was 100% when the yield was 11%.Abbreviations EDTA Ethylenediaminetetraacetic acid - ee enantiomeric excess - FID flame ionisation detector - GC gas chromatography - 1HNMR H nuclear magnetic resonance - K m Michaelis constant - NCIMB National Collection of Industrial and Marine Bacteria - td doubling time - V max Maximum velocity  相似文献   

14.
The siderophore produced by Rhodococcus rhodochrous strain OFS, rhodobactin, was isolated from iron-deficient cultures and purified by a combination of XAD-7 absorptive/partition resin column and semi-preparative HPLC. The siderophore structure was characterized using 1D and 2D 1H, 13C and 15N NMR techniques (DQFCOSY, TOCSY, NOESY, HSQC and LR-HSQC) and was confirmed using ESI-MS and MS/MS experiments. The structural characterization revealed that the siderophore, rhodobactin, is a mixed ligand hexadentate siderophore with two catecholate and one hydroxamate moieties for iron chelation. We further investigated the effects of Fe concentrations on siderophore production and found that Fe limiting conditions (Fe concentrations from 0.1 μM to 2.0 μM) facilitated siderophore excretion. Our interests lie in the role that siderophores may have in binding metals at mixed contamination sites (containing metals/radionuclides and organics). Given the broad metabolic capacity of this microbe and its Fe scavenging ability, R. rhodochrous OFS may have a competitive advantage over other organisms employed in bioremediation. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The nitrile hydratase (NHase, EC 3.5.5.1) activity of Rhodococcus rhodochrous PA-34 was explored for the conversion of 3-cyanopyridine to nicotinamide. The NHase activity (∼18 U/mg dry cell weight, dcw) was observed in 0.1 M phosphate buffer, pH 8.0 containing 1M 3-cyanopyridine as substrate, and 0.75 mg of resting cells (dry cell weight) per ml reaction mixture at 40°C. However, 25°C was more suitable for prolonged batch reaction at high substrate (3-cyanopyridine) concentration. In a batch reaction (1 liter), 7M 3-cyanopyridine (729 g) was completely converted to nicotinamide (855 g) in 12h at 25°C using 9.0 g resting cells (dry cell weight) of R. rhodochrous PA-34.  相似文献   

16.
Baboshin  M. A.  Finkelstein  Z. I.  Golovleva  L. A. 《Microbiology》2003,72(2):162-166
The transformation of fluorene by Rhodococcus rhodochrous strain 172 grown on sucrose and Pseudomonas fluorescens strain 26K grown on glycerol was studied as a function of the substrate concentration and the growth phase. Under certain cultivation conditions, fluorene was completely consumed from the medium. The specific transformation rate of fluorene was considerably higher when it was transformed in the presence of the cosubstrates than when it served as the sole carbon source. An approach to the evaluation of the specific transformation rate of fluorene during batch cultivations is proposed.  相似文献   

17.
A propionitrile-induced nitrile hydratase (NHase), a promising biocatalyst for synthesis of organic amides has been purified from cell-free extract of Rhodococcus rhodochrous PA-34. About 11-fold purification of NHase was achieved with 52% yield. The SDS-PAGE of the purified enzyme revealed that it consisted of two subunits of 25.04 kD and 30.6 kD. However, the molecular weight of holoenzyme was speculated to be 86 kD by native-PAGE. This NHase exhibited maximum activity at pH 8.0 and temperature 40°C. Half-life was 2 h at 40°C and 0.5 h at 50°C. The Km and Vmax were 167 mM and 250 μmole/min/mg using 25 mM 3-cyanopyridine as substrate. AgNO3, Pb(CH3COO)2 and HgCl2 inhibited the NHase to extent of 89–100%.  相似文献   

18.
The nitrile hydratase (Nhase) induced cells of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The cells of R. rhodochrous PA-34 immobilized in 2% (w/v) agar (1.76 mg dcw/ml agar matrix) exhibited maximum Nhase activity (8.25 U/mg dcw) for conversion of acrylonitrile to acrylamide at 10°C in the reaction mixture containing 0.1 M potassium phosphate buffer (pH 7.5), 8% (w/v) acrylonitrile and immobilized cells equivalent to 1.12 mg dcw (dry cell weight) per ml. In a partitioned fed batch reaction at 10°C, using 1.12 g dcw immobilized cells in a final volume of 1 l, a total of 372 g of acrylonitrile was completely hydrated to acrylamide (498 g) in 24 h. From the above reaction mixture 87% acrylamide (432 g) was recovered through crystallization at 4°C. By recycling the immobilized biocatalyst (six times), a total of 2,115 g acrylamide was produced.  相似文献   

19.
Using cell-free extracts of a desulfurizing mesophile, Rhodococcus erythropolis KA2-5-1 (the Dsz system) and Escherichia coli JM109, which possesses the desulfurizing genes of a thermophile Paenibacillus sp. A11-2 (the Tds system), the reactivity of desulfurizing enzymes toward 4,6-dialkyl dibenzothiophenes (4,6-dialkyl DBTs) and 7-alkyl benzothiophenes (7-alkyl BTs) was investigated. Both systems desulfurized all the 4,6-dialkyl DBTs, except 4,6-dibutyl DBT. Although some alkylated BTs were degraded by the Dsz system, no desulfurized compounds were detected. The reactivity of the Tds system toward alkylated BTs was higher than that of DBT. In contrast to the Dsz system, the Tds system yielded desulfurized compounds from all of the alkylated BTs examined.  相似文献   

20.
Buchnericin-LB adsorbs to gram-positive but not to gram-negative bacteria. The tested gram-positive bacteria were species of Lactobacillus, Pediococcus, Leuconostoc, Enterococcus, Lactococcus, Listeria, Bacillus, Staphylococcus; gram-negative bacteria belonged to the genera Salmonella, Escherichia, Yersinia and Pseudomonas. Buchnericin-LB adsorption depended on pH but not on time and temperature. Also some anions of salts and lipoteichoic acid reduced or inhibited its adsorption. Treatment of cells and cell walls of sensitive bacteria with detergents, organic solvents or enzymes did not affect subsequent binding of buchnericin-LB. Treatment with buchnericin-LB caused sensitive cells to lose high amounts of intracellular K+ ions and UV-absorbing materials and became more permeable to o-nitrophenol-β-D-galactopyranoside. Buchnericin-LB (640-2560 AU/ml) decreased the colony forming units (99%) and absorbance values of Listeria monocytogenes and Bacillus cereus. These results indicate that the mode of action of buchnericin-LB is bactericidal and its lethal effect is very rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号