首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Isoproterenol-induced cardiac hypertrophy is associated with increased expression of endothelial nitric oxide synthase in the aorta but without signs of improved endothelial function. The aim was to examine the hypothesis that increased expression of eNOS allosteric inhibitor caveolin-1 could be associated with unimproved endothelium-dependent relaxations. Rats received isoproterenol (5 mg/kg body mass, i.p., n = 13) or its vehicle (n = 14) during 1 week. Systolic blood pressure (SBP) and heart rate (HR) were measured by the tail-cuff method. Expression of eNOS and caveolin-1 was measured using immunoblotting analysis. Relaxations of isolated aorta to acetylcholine and sodium nitroprusside were evaluated ex vivo. After 1 week of isoproterenol administration, basal SBP and HR were decreased (SBP 110 +/- 3 vs. 126 +/- 3 mmHg, p < 0.05; HR 342 +/- 8 vs. 366 +/- 6 beats/min, p < 0.05). Isoproterenol increased the mass of the left ventricle (+33% +/- 4% vs. control; p < 0.05) and right ventricle (+40% +/- 9%; p < 0.05). Isoproterenol administration increased the expression of eNOS (+53% +/- 12%; p < 0.05) and caveolin-1 (+54% +/- 20%, p < 0.05) in the aorta. Relaxation of isolated aorta to acetylcholine and sodium nitroprusside showed a trend towards a worsened endothelial function and a lower sensitivity to exogenous NO. Thus, 1 week of isoproterenol administration led to increased eNOS expression in the aorta without amelioration of endothelial vasorelaxation function. Concomitant increase in caveolin-1 expression may be responsible for this paradox.  相似文献   

2.
The hepatopulmonary syndrome (HPS) results from intrapulmonary vasodilation in the setting of cirrhosis and portal hypertension. In experimental HPS, pulmonary endothelial endothelin B (ET(B)) receptor overexpression and increased circulating endothelin-1 (ET-1) contribute to vasodilation through enhanced endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. In both experimental cirrhosis and prehepatic portal hypertension, ET(B) receptor overexpression correlates with increased vascular shear stress, a known modulator of ET(B) receptor expression. We investigated the mechanisms of pulmonary endothelial ET(B) receptor-mediated eNOS activation by ET-1 in vitro and in vivo. The effect of shear stress on ET(B) receptor expression was assessed in rat pulmonary microvascular endothelial cells (RPMVECs). The consequences of ET(B) receptor overexpression on ET-1-dependent ET(B) receptor-mediated eNOS activation were evaluated in RPMVECs and in prehepatic portal hypertensive animals exposed to exogenous ET-1. Laminar shear stress increased ET(B) receptor expression in RPMVECs without altering mRNA stability. Both shear-mediated and targeted overexpression of the ET(B) receptor enhanced ET-1-mediated ET(B) receptor-dependent eNOS activation in RPMVECs through Ca(2+)-mediated signaling pathways and independent of Akt activation. In prehepatic portal hypertensive animals relative to control, ET-1 administration also activated eNOS independent of Akt activation and triggered HPS. These findings support that increased pulmonary microvascular endothelial ET(B) receptor expression modulates ET-1-mediated eNOS activation, independent of Akt, and contributes to the development of HPS.  相似文献   

3.
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.  相似文献   

4.
We investigated the influence of streptozotocin-induced diabetes on the responsiveness of the rat basilar artery to endothelin-1 (ET-1) and nitric oxide (NO), which is known to counteract ET-1. In basilar arteries isolated from diabetic rats: (a) the ET-1-induced contraction was enhanced, (b) the contraction induced by N(G)-nitro-l-arginine [a nitric oxide synthase (NOS) inhibitor] was weaker, and (c) the levels of the mRNAs for ET(A)/ET(B) receptors and prepro-ET-1, but not for NOS, were significantly elevated (all versus age-matched controls). These data indicate that ET-1-induced vasoconstriction may be increased in the diabetic rat basilar artery, and that this hyper-reactivity to ET-1 may be due to an overproduction of ET-1, an up-regulation of ET(A)/ET(B) receptors, and a defect in the bioavailability of NO.  相似文献   

5.
6.
The mechanisms leading to the age-related loss of endothelial nitric oxide (NO) and NO-dependent vasodilation remain largely unknown. Freshly isolated endothelium from young (6 months) and old (36 months) F344xBrN rats were analyzed for endothelial nitric oxide synthase (eNOS) protein, its subcellular distribution, and association with regulatory proteins. Results show that both vessel ring vasoreactivity and A23187-induced eNOS activity in isolated endothelial cells significantly (p < or = 0.05) declined with age. Levels of cGMP, a reliable marker for NO bioactivity also declined significantly (p < or = 0.01). However, no change in overall eNOS protein was evident. Subcellular fractionation studies revealed an age-related loss in active, plasma membrane-bound eNOS relative to eNOS in the Golgi/cytosol of the endothelium. Plasma membrane-associated eNOS in aged endothelium was also less complexed with the activating proteins Hsp90 and Akt and more associated with to caveolin-1, which inhibits eNOS activity. These results suggest that age-dependent loss of NO may be partly caused by differences in eNOS subcellular distribution and its association with inhibitory proteins.  相似文献   

7.
Endothelium-derived nitric oxide (NO) and endothelin (ET)-1 interact to regulate vascular tone. In congestive heart failure (CHF), the release and/or the activity of both factors is affected. We hypothesized that the increased ET-1 production associated with CHF may result in a reduced smooth muscle sensitivity to NO. The aim of this study was to evaluate the effects of a chronic treatment with the ET(A)-receptor (ET receptor A) antagonist LU-135252 (LU) on cerebrovascular reactivity to sodium nitroprusside (SNP) in the rat infarct model of CHF. Rats were subjected to coronary artery ligation and were treated for 4 wk with placebo (n = 24) or LU (50 mg. kg(-1). day(-1), n = 29). CHF was associated with a decreased (P < 0.05) efficacy of SNP to induce relaxation of isolated middle cerebral arteries. Furthermore, neither NO synthase inhibition with N(omega)-nitro-L-arginine (L-NNA) nor endothelial denudation affected the efficacy of SNP. Thus the endothelium no longer influences smooth muscle sensitivity to SNP. LU treatment, however, normalized (P < 0.05) smooth muscle sensitivity to SNP. Sensitivity of ET-1-induced contraction was increased in CHF only in the presence of L-NNA, whereas contraction induced by ET(B) receptor (receptor B) stimulation was increased (P < 0.05) in endothelium-denuded vessels. LU treatment restored these changes in reactivity and revealed a significant endothelium-dependent ET(B)-mediated relaxation after NO synthase inhibition. In conclusion, CHF decreases and uncouples cerebrovascular smooth muscle sensitivity to SNP from endothelial regulation. The observation that chronic ET(A) blockade restored most of the changes associated with CHF suggests that activation of the ET-1 system importantly contributes to the alteration in vascular reactivity observed in experimental CHF.  相似文献   

8.
9.
Clinically significant increases in pulmonary vascular resistance have been noted on acute withdrawal of inhaled nitric oxide (NO). Endothelin (ET)-1 is a vasoactive peptide produced by the vascular endothelium that may participate in the pathophysiology of pulmonary hypertension. The objectives of this study were to determine the effects of inhaled NO on endogenous ET-1 production in vivo in the intact lamb and to determine the potential role of ET-1 in the rebound pulmonary hypertension associated with the withdrawal of inhaled NO. Seven 1-mo-old vehicle-treated control lambs and six PD-156707 (an ET(A) receptor antagonist)-treated lambs were mechanically ventilated. Inhaled NO (40 parts per million) was administered for 24 h and then acutely withdrawn. After 24 h of inhaled NO, plasma ET-1 levels increased by 119.5 +/- 42.2% (P < 0.05). Western blot analysis revealed that protein levels of preproET-1, endothelin-converting enzyme-1alpha, and ET(A) and ET(B) receptors were unchanged. On acute withdrawal of NO, pulmonary vascular resistance (PVR) increased by 77.8% (P < 0.05) in control lambs but was unchanged (-5.5%) in PD-156707-treated lambs. Inhaled NO increased plasma ET-1 concentrations but not gene expression in the intact lamb, and ET(A) receptor blockade prevented the increase in PVR after NO withdrawal. These data suggest a role for ET-1 in the rebound pulmonary hypertension noted on acute withdrawal of inhaled NO.  相似文献   

10.
Although insulin resistance (IR) is a major risk factor for coronary artery disease, little is known about the regulation of coronary vascular tone in IR by endothelin-1 (ET-1). We examined ET-1 and PGF(2alpha)-induced vasoconstriction in isolated small coronary arteries (SCAs; approximately 250 microM) of Zucker obese (ZO) rats and control Zucker lean (ZL) rats. ET-1 response was assessed in the absence and presence of endothelin type A (ET(A); BQ-123), type B (ET(B); BQ-788), or both receptor inhibitors. ZO arteries displayed reduced contraction to ET-1 compared with ZL arteries. In contrast, PGF(2alpha) elicited similar vasoconstriction in both groups. ET(A) inhibition diminished the ET-1 response in both groups. ET(B) inhibition alone or in combination with ET(A) blockade, however, restored the ET-1 response in ZO arteries to the level of ZL arteries. Similarly, inhibition of endothelial nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced the contraction to ET-1 and abolished the difference between ZO and ZL arteries. In vascular smooth muscle cells from ZO, ET-1-induced elevation of myoplasmic intracellular free calcium concentration ([Ca2+]i) (measured by fluo-4 AM fluorescence), and maximal contractions were diminished compared with ZL, both in the presence and absence of l-NAME. However, increases in [Ca2+]i elicited similar contractions of the vascular smooth muscle cells in both groups. Analysis of protein and total RNA from SCA of ZO and ZL revealed equal expression of ET-1 and the ET(A) and ET(B) receptors. Thus coronary arteries from ZO rats exhibit reduced ET-1-induced vasoconstriction resulting from increased ET(B)-mediated generation of NO and diminished elevation of myoplasmic [Ca2+]i.  相似文献   

11.
Systemic vasodilation is the initiating event of the hyperdynamic circulatory state, being most likely triggered by increased levels of vasodilators, primarily nitric oxide (NO). Endothelial NO synthase (eNOS) is responsible for this event. We tested the hypothesis that gene deletion of eNOS and inducible NOS (iNOS) may inhibit the development of the hyperdynamic circulatory state in portal hypertensive animals. To test this hypothesis, we used mice lacking eNOS (eNOS-/-) or eNOS/iNOS (eNOS/iNOS-/-) genes. A partial portal vein ligation (PVL) was used to induce portal hypertension. Sham-operated animals were used as a control. Hemodynamic characteristics were tested 2 wk after surgery. As opposed to our hypothesis, PVL also caused significant reduction in peripheral resistance in eNOS-/- compared with sham animals (0.33 +/- 0.02 vs. 0.41 +/- 0.03 mmHg. min x kg body wt x ml(-1); P = 0.04) and in eNOS/iNOS-/- animals with PVL compared with that of the sham-operated group (0.44 +/- 0.02 vs. 0.54 +/- 0.04; P = 0.03). This demonstrates that, despite gene deletion of eNOS, the knockout mice developed hyperdynamic circulation. Compensatory vasodilator molecule(s) are upregulated in place of NO in the systemic and splanchnic circulation in portal hypertensive animals.  相似文献   

12.
13.
The objective of this study was to determine whether activation of protein kinase B (PKB) is involved in the production of nitric oxide (NO) induced by cAMP signal transduction. Mongrel dogs were used for this study. Coronary microvessels were isolated from the left ventricular free wall of these dog hearts. Forskolin (an activator of adenylyl cyclase that increases intracellular cAMP level) and 8-bromo-cAMP (a membrane-permeable cAMP analog) were used to stimulate NO release and activation of PKB and endothelial NO synthase (eNOS) in these blood vessels. We found that forskolin and 8-bromo-cAMP increased NO release (quantified by using the Griess reaction) from coronary microvessels by 80 +/- 6 and 78 +/- 11 pmol/mg (mean +/- SE), respectively (P < 0.05 vs. control). Western blot analysis showed that forskolin elicited a significant increase in eNOS phosphorylation (59 +/- 11%) at serine-1177 (a positively regulatory phosphorylation site for eNOS) and a significant increase in dephosphorylation (28 +/- 6%) at threonine-495 (a negatively regulatory phosphorylation site of eNOS) (P < 0.05 vs. control). Interestingly, forskolin also increased the phosphorylation of PKB at serine-473 (by 49 +/- 17%) and threonine-308 (by 53 +/- 17%), respectively (P < 0.05 vs. control; phosphorylation of both sites is required for a full activation of PKB). N(omega)-nitro-l-arginine methyl ester (an NOS inhibitor) blocked NO formation, Rp diastereomer of cAMP (a PKA inhibitor), and LY-294002 [a PI3-kinase (an activator of PKB) inhibitor] prevented the production of NO, phosphorylation of PKB, and eNOS induced by forskolin. Our data clearly show an involvement of PKB activation in cAMP signal-induced NO production. We are reporting for the first time that cAMP signal transduction stimulates eNOS activation through a PKB-mediated mechanism.  相似文献   

14.
In addition to its vasodilator properties, nitric oxide (NO) promotes angiogenesis in the systemic circulation and tumors. However, the role of NO in promoting normal lung vascular growth and its impact on alveolarization during development or in response to perinatal stress is unknown. We hypothesized that NO modulates lung vascular and alveolar growth and that decreased NO production impairs distal lung growth in response to mild hypoxia. Litters of 1-day-old mouse pups from parents that were heterozygous for endothelial nitric oxide synthase (eNOS) deficiency were placed in a hypobaric chamber at a simulated altitude of 12,300 ft (Fi(O(2)) = 0.16). After 10 days, the mice were killed, and lungs were fixed for morphometric and molecular analysis. Compared with wild-type controls, mean linear intercept (MLI), which is inversely proportional to alveolar surface area, was increased in the eNOS-deficient (eNOS -/-) mice [51 +/- 2 micro m (eNOS -/-) vs. 41 +/- 1 micro m (wild type); P < 0.01]. MLI was also increased in the eNOS heterozygote (+/-) mice (44 +/- 1 micro m; P < 0.03 vs. wild type). Vascular volume density was decreased in the eNOS -/- mice compared with wild-type controls (P < 0.03). Lung vascular endothelial growth factor (VEGF) protein and VEGF receptor-1 (VEGFR-1) protein content were not different between the study groups. In contrast, lung VEGFR-2 protein content was decreased from control values by 63 and 34% in the eNOS -/- and eNOS +/- mice, respectively (P < 0.03). We conclude that exposure to mild hypoxia during a critical period of lung development impairs alveolarization and reduces vessel density in the eNOS-deficient mouse. We speculate that NO preserves normal distal lung growth during hypoxic stress, perhaps through preservation of VEGFR-2 signaling.  相似文献   

15.
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)). Right ventricular systolic pressure and cross-sectional medial vascular wall area of pulmonary arteries rose significantly, and eNOS mRNA levels increased 1.8- and 2.6-fold after 2 and 4 wk of hypoxia, respectively (each P < 0.05). Pulmonary ET-1 mRNA and ET-1 plasma levels increased significantly after 4 wk of hypoxia (each P < 0.05). LU-135252 reduced right ventricular systolic pressure, vascular remodeling, and eNOS gene expression in chronic hypoxic rats (each P < 0.05), whereas ET-1 production was not altered. We conclude that eNOS expression in chronic hypoxic rat lungs is modified predominantly by hemodynamic factors, whereas the ET-B receptor-mediated pathway and hypoxia seem to be less important.  相似文献   

16.
Congestive heart failure (CHF) after myocardial infarction is associated with diminished endothelial nitric oxide (NO)-mediated vasorelaxation. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors have been shown to modulate vascular tone independent of the effects on lipid lowering. We hypothesized that simvastatin restores NO-dependent vasorelaxation with CHF. We found that incubation of the normal rat aorta with 0.1 mM simvastatin for 24 h enhanced ACh-mediated vasorelaxation (P < 0.05). Moreover, simvastatin increased (P < 0.05) endothelial NO synthase (eNOS) protein content by >200% (82.0 +/- 14.0 vs. 21.6 +/- 7.9% II/microg). In cultured endothelial cells, simvastatin (10 and 20 microM) increased eNOS levels by 114.7 +/- 39.9 and 212.0 +/- 75.0% II/microg protein, respectively (both P < 0.05; n = 8). In the rat coronary artery ligation model, oral gavage with 20 mg. kg(-1). day(-1) simvastatin for 3 wk decreased (P < 0.05) mean arterial pressure (121 +/- 20 vs. 96.5 +/- 10.8 mmHg) and left ventricular change in pressure with time (4,500 +/- 700 vs. 4,091 +/- 1,064 mmHg/s, n = 6). Simvastatin reduced (P < 0.05) basal vasoconstriction and improved ACh-mediated vasorelaxation in CHF arterial rings. Inhibition of NO generation by N(G)-nitro-L-arginine methyl ester (100 microM) abolished the ACh-induced vasorelaxation in all rats. In conclusion, chronic treatment of CHF with simvastatin restores endothelial NO-dependent dysfunction and upregulates eNOS protein content in arterial tissue.  相似文献   

17.
Studies were carried out to determine the effects of IL-1beta on newborn intestinal hemodynamics. IL-1beta increased the release of ET-1 by primary endothelial cells in a dose-dependent manner; as well, it reduced expression of the endothelin (ET) type B (ET(B)) receptor on endothelial cells and increased expression of the ET type A (ET(A)) receptor on vascular smooth muscle cells. IL-1beta increased endothelial cell endothelial nitric oxide (NO) synthase (eNOS) expression but did not enhance eNOS activity as evidenced by release of NO(x) into conditioned medium in response to acetylcholine or shear stress. The effects of IL-1beta on flow-induced dilation were evaluated in terminal mesenteric arteries in vitro. Pretreatment with IL-1beta (1 ng; 4 h) significantly attenuated vasodilation in response to flow rates of 100 and 200 microl/min. This effect was mediated, in part, by the endothelin ET(A) receptor; thus selective blockade of ET(A) receptors with BQ610 nearly restored flow-induced dilation. In contrast, exogenous ET-1 only shifted the diameter-flow curve downward without altering the percent vasodilation in response to flow. The effects of IL-1beta on ileal oxygenation were then studied using in vivo gut loops. Intramesenteric artery infusion of IL-1beta upstream of the gut loop caused ileal vasoconstriction and reduced the arterial-venous O(2) difference across the gut loop; consequently, it reduced ileal oxygenation by 60%. This effect was significantly attenuated by pretreatment with BQ610. These data support a linkage between the proinflammatory cytokine IL-1beta and vascular dysfunction within the intestinal circulation, mediated, at least in part, by the ET system.  相似文献   

18.
Sauvageau S  Thorin E  Villeneuve L  Dupuis J 《Peptides》2008,29(11):2039-2045
Blockade of the endothelin (ET) system is beneficial in pulmonary arterial hypertension (PAH). The contribution of ET-3 and its interactions with ET receptors have never been evaluated in the monocrotaline (MCT)-induced model of PAH. Vasoreactivity of pulmonary arteries was investigated; ET-3 localization was determined by confocal imaging and gene expression of prepro-ET-3 quantified using RT-PCR. ET-3 plasma levels tended to increase in PAH. ET-3 localized in the media of pulmonary arteries, where gene expression of prepro-ET-3 was reduced in PAH. ET-3 induced similar pulmonary vasoconstrictions in sham and PAH rats. In sham rats, the ET(A) antagonist A-147627 (10nmol/l) significantly reduced the maximal response to ET-3 (E(max) 77+/-1 to 46+/-2%, mean+/-S.E.M., P<0.001), while the ET(B) antagonist A-192621 (1mumol/l) reduced the sensitivity (EC(50) 21+/-7 to 59+/-16nmol/l, P<0.05) without affecting E(max). The combination of both antagonists completely abolished ET-3-induced pulmonary vasoconstriction. In PAH, the ET(A) antagonist further reduced the maximal response to ET-3 and shifted the EC(50) (E(max) 23+/-2%, P<0.001, EC(50) 104+/-24nmol/l, P<0.05), while the ET(B) antagonist only shifted the EC(50) (123+/-36nmol/l, P<0.05) without affecting the E(max). In PAH, dual ET receptor inhibition did not further reduce constriction compared to selective ET(A) inhibition. ET-3 significantly contributes to pulmonary vasoconstriction by activating the ET(B) at low concentration, and the ET(A) at high concentration. The increased inhibitory effect of the ET(A) antagonist in PAH suggests that the contribution of ET(B) to ET-3-induced vasoconstriction is reduced. Although ET-3 is a potent pulmonary vasoconstrictor in PAH, its potential pathophysiologic contribution remains uncertain.  相似文献   

19.
Gram positive (G+) infections make up ∼50% of all acute lung injury cases which are characterized by extensive permeability edema secondary to disruption of endothelial cell (EC) barrier integrity. A primary cause of increased permeability are cholesterol-dependent cytolysins (CDCs) of G+-bacteria, such as pneumolysin (PLY) and listeriolysin-O (LLO) which create plasma membrane pores, promoting Ca2+-influx and activation of PKCα. In human lung microvascular endothelial cells (HLMVEC), pretreatment with the nitric oxide synthase (NOS) inhibitor, ETU reduced the ability of LLO to increase microvascular cell permeability suggesting an endothelial nitric oxide synthase (eNOS)-dependent mechanism. LLO stimulated superoxide production from HLMVEC and this was prevented by silencing PKCα or NOS inhibition suggesting a link between these pathways. Both LLO and PLY stimulated eNOS T495 phosphorylation in a PKC-dependent manner. Expression of a phosphomimetic T495D eNOS (human isoform) resulted in increased superoxide and diminished nitric oxide (NO) production. Transduction of HLMVEC with an active form of PKCα resulted in the robust phosphorylation of T495 and increased peroxynitrite production, indicative of eNOS uncoupling. To determine the mechanisms underlying eNOS uncoupling, HLMVEC were stimulated with LLO and the amount of hsp90 and caveolin-1 bound to eNOS determined. LLO stimulated the dissociation of hsp90, and in particular, caveolin-1 from eNOS. Both hsp90 and caveolin-1 have been shown to influence eNOS uncoupling and a peptide mimicking the scaffolding domain of caveolin-1 blocked the ability of PKCα to stimulate eNOS-derived superoxide. Collectively, these results suggest that the G+ pore-forming toxins promote increased EC permeability via activation of PKCα, phosphorylation of eNOS-T495, loss of hsp90 and caveolin-1 binding which collectively promote eNOS uncoupling and the production of barrier disruptive superoxide.  相似文献   

20.
Endothelin-1 (ET-1) and nitric oxide (NO) exert opposite effects in the cardiovascular system, and there is evidence that the NO counters the potential deleterious effects of ET-1. We investigated whether NO affects the increased mRNA expression of ET-1 and endothelin receptors induced by (i) 30 min of ischemia with or without 30 min reperfusion in myocytes from isolated rat hearts or (ii) ischemic conditions (acidosis or hypoxia) in cultured rat neonatal ventricular myocytes. Ischemia with or without reperfusion produced more than a twofold increase in mRNA expression of ET-1 as well as the ET(A) and ET(B) receptor (P < 0.05), although these effects were completely blocked by the NO donor 3-morpholinosydnonimine (SIN-1; 1 microM). To assess the possible factors regulating ET expression, myocytes were exposed to acidosis (pH 6.8-6.2) or to hypoxic conditions in an anaerobic chamber for 24 h in the presence or absence of SIN-1. At all acidic pHs, ET-1 and ET(A) receptor mRNA expression was significantly (P < 0.05) elevated approximately threefold, although the magnitude of elevation was independent of the degree of acidosis. These effects were completely prevented by SIN-1. ET(B) receptor expression was unaffected by acidosis. Hypoxia increased ET-1 as well as ET(A) and ET(B) receptor expression threefold (P < 0.05), although this was unaffected by SIN-1. Our results demonstrate that myocardial ischemia and reperfusion upregulate the ET system, which is inhibited by NO. Although increased expression of the ET system can be mimicked by both acidosis and hypoxia, only the effects of the former are NO sensitive. NO may serve an endogenous inhibitory factor which regulates the expression of the ET system under pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号