首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs.  相似文献   

3.
The local environment at adenosine residues in the bI5 group I intron RNA was monitored as a function of Mg(2+) using both the traditional method of dimethyl sulfate (DMS) N1 methylation and a new approach, selective acylation of 2'-amine substituted nucleotides. These probes yield complementary structural information because N1 methylation reports accessibility at the base pairing face, whereas 2'-amine acylation scores overall residue flexibility. 2'-Amine acylation robustly detects RNA secondary structure and is sensitive to higher order interactions not monitored by DMS. Disruption of RNA structure due to the 2'-amine substitution is rare and can be compensated by stabilizing folding conditions. Peripheral helices that do not interact with other parts of the RNA are more stable than both base paired helices and tertiary interactions in the conserved catalytic core. The equilibrium state of the bI5 intron RNA, prior to assembly with its protein cofactor, thus features a relatively loosely packed core anchored by more stable external stem-loop structures. Adenosine residues in J4/5 and P9.0 form structures in which the nucleotide is constrained but the N1 position is accessible, consistent with pre-organization to form long-range interactions with the 5' and 3' splice sites.  相似文献   

4.
Some group II introns can undergo a protein-independent splicing reaction with the basic reaction pathway similar to nuclear pre-mRNA splicing and the catalytic functions of some of the structural components have been determined. To identify further functional domains, we have generated an ensemble of partial and complete deletions of domains I, II, III and IV of the self-splicing group II intron bI1 from yeast mitochondria and studied their effects on the splicing reaction in vitro. Our results indicate that domains II and IV, which vary considerably in length and structure among group II introns, do not play a direct role in catalysis but mainly help to ensure the proper interaction between upstream and downstream catalytically active structural elements. Deletions of sub-domains of domain I and domain III indicate that these elements are involved in 5' cleavage by hydrolysis and in a reaction in trans (exon reopening), and that this function can be inhibited without affecting the normal 5' cleavage by transesterification. Yet, we infer that the helical structures affected by the mutational alterations might not contribute to this reaction mode per se but that changes within local secondary structures perturb the internal conformation of the ribozyme. Furthermore, we have designed an abbreviated version of intron bI1, with a length of 542 nucleotides, which is still catalytically active.  相似文献   

5.
6.
7.
8.
The folding mechanism and stability of dimeric formate dehydrogenase from Candida methylica was analysed by exposure to denaturing agents and to heat. Equilibrium denaturation data yielded a dissociation constant of about 10−13 M for assembly of the protein from unfolded chains and the kinetics of refolding and unfolding revealed that the overall process comprises two steps. In the first step a marginally stable folded monomeric state is formed at a rate (k1) of about 2 × 10−3 s−1 (by deduction k−1 is about10−4 s−1) and assembles into the active dimeric state with a bimolecular rate constant (k2) of about 2 × 104 M−1 s−1. The rate of dissociation of the dimeric state in physiological conditions is extremely slow (k−2 ∼ 3 × 10−7 s−1).  相似文献   

9.
M M?rl  C Schmelzer 《Cell》1990,60(4):629-636
Group II intron bI1, the first intron of the COB gene in the mitochondria of S. cerevisiae, is able to self-splice in vitro with the basic pathway similar to nuclear pre-mRNA splicing. We show that incubation of the intron lariat with ligated exons bE1 and bE2 leads to a complete reversal of the splicing reaction. The integration of the intron into the ligated exons is correct; the reconstituted preRNA of the reverse reaction can undergo a self-splicing reaction anew. When incubated with a foreign RNA species bearing a sequence motif that is complementary to exon binding site 1, the lariat can integrate into this RNA with the position of insertion immediately downstream of this sequence. This result implies that transposition of group II introns on the RNA level by reversal of the splicing reaction is, in principle, conceivable.  相似文献   

10.
11.
12.
A novel mechanism for protein-assisted group I intron splicing   总被引:3,自引:0,他引:3       下载免费PDF全文
Previously it was shown that the Aspergillus nidulans (A.n.) mitochondrial COB intron maturase, I-AniI, facilitates splicing of the COB intron in vitro. In this study, we apply kinetic analysis of binding and splicing along with RNA deletion analysis to gain insight into the mechanism of I-AniI facilitated splicing. Our results are consistent with I-AniI and A.n. COB pre-RNA forming a specific but labile encounter complex that is resolved into the native, splicing-competent complex. Significantly, kinetic analysis of splicing shows that the resolution step is rate limiting for splicing. RNA deletion studies show that I-AniI requires most of the A.n. COB intron for binding suggesting that the integrity of the I-AniI-binding site depends on overall RNA tertiary structure. These results, taken together with the observation that A.n. COB intron lacks significant stable tertiary structure in the absence of protein, support a model in which I-AniI preassociates with an unfolded COB intron via a "labile" interaction that facilitates correct folding of the intron catalytic core, perhaps by resolving misfolded RNAs or narrowing the number of conformations sampled by the intron during its search for native structure. The active intron conformation is then "locked in" by specific binding of I-Anil to its intron interaction site.  相似文献   

13.
The I-AniI maturase facilitates self-splicing of a mitochondrial group I intron in Aspergillus nidulans. Binding occurs in at least two steps: first, a specific but labile encounter complex rapidly forms and then this intermediate is slowly resolved into a native, catalytically active RNA/protein complex. Here we probe the structure of the RNA throughout the assembly pathway. Although inherently unstable, the intron core, when bound by I-AniI, undergoes rapid folding to a near-native state in the encounter complex. The next transition includes the slow destabilization and docking into the core of the peripheral stacked helix that contains the 5' splice site. Mutational analyses confirm that both transitions are important for native complex formation. We propose that protein-driven destabilization and docking of the peripheral stacked helix lead to subtle changes in the I-AniI binding site that facilitate native complex formation. These results support an allosteric-feedback mechanism of RNA-protein recognition in which proteins engaged in an intermediate complex can influence RNA structure far from their binding sites. The linkage of these changes to stable binding ensures that the protein and RNA do not get sequestered in nonfunctional complexes.  相似文献   

14.
The imported mitochondrial leucyl-tRNA synthetase (NAM2p) and a mitochondrial-expressed intron-encoded maturase protein are required for splicing the fourth intron (bI4) of the yeast cob gene, which expresses an electron transfer protein that is essential to respiration. However, the role of the tRNA synthetase, as well as the function of the bI4 maturase, remain unclear. As a first step towards elucidating the mechanistic role of these protein splicing factors in this group I intron splicing reaction, we tested the hypothesis that both leucyl-tRNA synthetase and bI4 maturase interact directly with the bI4 intron. We developed a yeast three-hybrid system and determined that both the tRNA synthetase and bI4 maturase can bind directly and independently via RNA-protein interactions to the large bI4 group I intron. We also showed, using modified two-hybrid and three-hybrid assays, that the bI4 intron bridges interactions between the two protein splicing partners. In the presence of either the bI4 maturase or the Leu-tRNA synthetase, bI4 intron transcribed recombinantly with flanking exons in the yeast nucleus exhibited splicing activity. These data combined with previous genetic results are consistent with a novel model for a ternary splicing complex (two protein: one RNA) in which both protein splicing partners bind directly to the bI4 intron and facilitate its self-splicing activity.  相似文献   

15.
16.
17.
Structure and assembly of group I introns   总被引:1,自引:0,他引:1  
Self-splicing group I introns have served as a model for RNA catalysis and folding for over two decades. New three-dimensional structures now bring the details into view. Revelations include an unanticipated turn in the RNA backbone around the guanosine-binding pocket. Two metal ions in the active site coordinate the substrate and phosphates from all three helical domains.  相似文献   

18.
Zarrinkar PP  Sullenger BA 《Biochemistry》1999,38(11):3426-3432
Group I ribozymes can repair mutant RNAs via trans-splicing. Unfortunately, substrate specificity is quite low for the trans-splicing reaction catalyzed by the group I ribozyme from Tetrahymenathermophila. We have used a systematic approach based on biochemical knowledge of the function of the Tetrahymena ribozyme to optimize its ability to discriminate against nonspecific substrates in vitro. Ribozyme derivatives that combine a mutation which indirectly slows down the rate of the chemical cleavage step by weakening guanosine binding with additional mutations that weaken substrate binding have greatly enhanced specificity with short oligonucleotide substrates and an mRNA fragment derived from the p53 gene. Moreover, compared to the wild-type ribozyme, reaction of a more specific ribozyme with targeted substrates is much less sensitive to the presence of nonspecific RNA competitors. These results demonstrate how a detailed understanding of the biochemistry of a catalytic RNA can facilitate the design of customized ribozymes with improved properties for therapeutic applications.  相似文献   

19.
We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron? strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron? alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron? rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis. © 1992 Wiley-Liss, Inc.  相似文献   

20.
Bidirectional effectors of a group I intron ribozyme.   总被引:4,自引:1,他引:3       下载免费PDF全文
The group I self-splicing introns found in many organisms are competitively inhibited by L-arginine. We have found that L-arginine acts stereoselectively on the Pc1. LSU nuclear group I intron of Pneumocystis carinii, competitively inhibiting the first (cleavage) step of the splicing reaction and stimulating the second (ligation) step. Stimulation of the second step is most clearly demonstrated in reactions whose first step is blocked after 15 min by addition of pentamidine. The guanidine moiety of arginine is required for both effects. L-Canavanine is a more potent inhibitor than L-arginine yet it fails to stimulate. L-Arginine derivatized on its carboxyl group as an amide, ester or peptide is more potent than L-arginine as a stimulator and inhibitor, with di-arginine amide and tri-arginine being the most potent effectors tested. The most potent peptides tested are 10,000 times as effective as L-arginine in inhibiting ribozyme activity, and nearly 400 times as effective as stimulators. Arginine and some of its derivatives apparently bind to site(s) on the ribozyme to alter its conformation to one more active in the second step of splicing while competing with guanosine substrate in the first step. This phenomenon indicates that ribozymes, like protein enzymes, can be inhibited or stimulated by non-substrate low molecular weight compounds, which suggests that such compounds may be developed as pharmacological agents acting on RNA targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号