首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forskolin-induced anion currents and depolarization were investigated to clarify the mechanism of HCO3 secretion in the intralobular duct cells of rat parotid glands. Anion currents of the cells were measured at the equilibrium potential of K+, using a gramicidin-perforated patch technique that negligibly affects intracellular anion concentration. The forskolin-induced anion current was sustained and significantly (54%) suppressed by glibenclamide (200 μm), a blocker of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel. The anion current was markedly suppressed by addition of 1 mm methazolamide, a carbonic anhydrase inhibitor, and removal of external HCO3 . Forskolin depolarized the cells in the current-clamp mode. Addition of methazolamide and removal of external HCO3 significantly decreased the depolarizing level. These results suggest that activation of anion channels (mainly the CFTR Cl channel located in luminal membranes) and production of cytosolic HCO3 induce the inward anion current and resulting depolarization. Inhibition of the Na+-K+-2Cl cotransporter and the Cl-HCO3 exchanger had no significant effect on the current or depolarization, indicating that the uptake of Cl via the Na+-K+-2Cl cotransporter or the Cl-HCO3 exchanger is not involved in the responses. Taken together, we conclude that forskolin activates the outward movement (probably secretion) of HCO3 produced intracellularly, but not of Cl due to lack of active Cl transport in parotid duct cells, and that the gramicidin-perforated patch method is very useful to analyze anion transport. Received: 17 June 2000/Revised: 14 November 2000  相似文献   

2.
We have used computer modeling to investigate how pancreatic duct cells can secrete a fluid containing near isotonic (∼140 mm) NaHCO3. Experimental data suggest that NaHCO3 secretion occurs in three steps: (i) accumulation of HCO 3 across the basolateral membrane of the duct cell by Na(HCO3) n cotransporters, Na+/H+ exchangers and proton pumps; (ii) secretion of HCO 3 across the luminal membrane on Cl/HCO 3 antiporters operating in parallel with Cl channels; and (iii) diffusion of Na+ through the paracellular pathway. Programming the currently available experimental data into our computer model shows that this mechanism for HCO 3 secretion is deficient in one important respect. While it can produce a relatively large volume of a HCO 3-rich fluid, it can only raise the luminal HCO 3 concentration up to about 70 mm. To achieve secretion of 140 mm NaHCO3 by the model it is necessary to: (i) reduce the conductive Cl permeability and increase the conductive HCO 3 permeability of the luminal membrane of the duct cell, and (ii) reduce the activity of the luminal Cl/HCO 3 antiporters. Under these conditions most of the HCO 3 is secreted via a conductive pathway. Based on our data, we propose that HCO 3 secretion occurs mainly by the antiporter in duct segments near the acini (luminal HCO 3 concentration up to ∼70 mm), but mainly via channels further down the ductal tree (raising luminal HCO 3 to ∼140 mm). Received: 15 November 1999/Revised: 29 March 2000  相似文献   

3.
The role of H+-ATPase in proximal tubule cell pH regulation was studied by microperfusion techniques and by confocal microscopy. In a first series of experiments, proximal S3 segments of rabbit kidney were perfused ``in vitro' while their cell pH was measured by fluorescence microscopy after loading with BCECF. In Na+- and Cl-free medium, cell pH fell by a mean of 0.37 ± 0.051 pH units, but after a few minutes started to rise again slowly. This rise was of 0.17 ± 0.022 pH units per min, and was significantly reduced by bafilomycin and by the Cl channel blocker NPPB, but not by DIDS. In a second series of experiments, subcellular vesicles of proximal tubule cells of S3 segments of mouse kidney were studied by confocal microscopy after visualization by acridine orange or by Lucifer yellow. After superfusion with low Na+ solution, which is expected to cause cell acidification, vesicles originally disposed in the basolateral and perinuclear cell areas, moved toward the apical area, as detected by changes in fluorescence density measured by the NIH Image program. The variation of apical to basolateral fluorescence ratios during superfusion with NaCl Ringer with time was 0.0018 ± 0.0021 min−1, not significantly different from zero (P > 0.42). For superfusion with Na+0 Ringer, this variation was 0.081 ± 0.015 min−1, P < 0.001 against 0. These slopes were markedly reduced by the Cl channel blocker NPPB, and by vanadate at a concentration that has been shown to disrupt cytoskeleton function. These data show that the delayed alkalinization of proximal tubule cells in Na+-free medium is probably due to a vacuolar H+-ATPase, whose activity is stimulated in the presence of Cl, and dependent on apical insertion of subcellular vesicles. The movement of these vesicles is also dependent on Cl and on the integrity of the cytoskeleton. Received: 11 April 2000/Revised: 14 August 2000  相似文献   

4.
Cell pH regulation was investigated in the T84 cell line derived from epithelial colon cancer. Cell pH was measured by ratiometric fluorescence microscopy using the fluorescent probe BCECF. Basal pH was 7.17 ± 0.023 (n= 48) in HEPES Ringer. After acidification by an ammonium pulse, cell pH recovered toward normal at a rate of 0.13 ± 0.011 pH units/min in the presence of Na+, but in the absence of this ion or after treatment with 0.1 mm hexamethylene amiloride (HMA) no significant recovery was observed, indicating absence of Na+ independent H+ transport mechanisms in HEPES Ringer. In CO2/HCO 3 Ringer, basal cell pH was 7.21 ± 0.020 (n= 35). Changing to HEPES Ringer, a marked alkalinization was observed due to loss of CO2, followed by return to the initial pH at a rate of −0.14 ± 0.012 (n= 8) pH/min; this return was retarded or abolished in the absence of Cl or after addition of 0.2 mm DIDS, suggesting extrusion of bicarbonate by Cl/HCO 3 exchange. This exchange was not Na+ dependent. When Na+ was added to cells incubated in 0 Na+ Ringer while blocking Na+/H+ exchange by HMA, cell alkalinization by 0.19 ± 0.04 (n= 11) pH units was observed, suggesting the presence of Na+/HCO 3 cotransport carrying HCO 3 into these cells, which was abolished by DIDS. These experiments, thus, show that Na+/H+ and Cl/HCO 3 exchange and Na+/HCO 3 cotransport participate in cell pH regulation in T84 cells. Received: 3 April 2000/Revised: 22 June 2000  相似文献   

5.
The transport mechanisms of Ambystoma proximal tubule that mediate transcellular Cl absorption linked to Na+ were investigated in isolated perfused tubules using Cl-selective and voltage-recording microelectrodes. In control solutions intracellular activity of Cl (a i Cl ) is 11.3 ± 0.5 mm, the basolateral (V 1 ), apical (V 2 ), and transepithelial (V 3 ) potential differences are −68 ± 1.2 mV, +62 ± 1.2 mV and −6.4 ± 0.3 mV, respectively. When Na+ absorption is decreased by removal of organic substrates from the lumen, a i Cl falls by 1.3 ± 0.3 mm and V 2 hyperpolarizes by +11.4 ± 1.7 mV. Subsequent removal of Na+ from the lumen causes a i Cl to fall further by 2.3 ± 0.4 mm and V 2 to hyperpolarize further by +15.3 ± 2.4 mV. The contribution of transporters and channels to the observed changes of a i Cl was examined using ion substitutions and inhibitors. Apical Na/Cl or Na/K/2Cl symport is excluded because bumetanide, furosemide or hydrochlorothiazide have no effect on a i Cl . The effects of luminal HCO 3 removal and/or of disulfonic stilbenes argue against the presence of apical Cl-base exchange such as Cl-HCO3 or Cl-OH. The effects of basolateral HCO 3 removal, of basolateral Na+ removal and/or of disulfonic stilbenes are compatible with presence of basolateral Na-independent Cl-base exchange and Na-driven Cl-HCO3 exchange. Several lines of evidence favor conductive Cl transport across both the apical and basolateral membrane. Addition of the chloride-channel blocker diphenylamine-2-carboxylate to the lumen or bath, increases the a i Cl by 2.4 ± 0.6 mm or 2.9 ± 1.0 mm respectively. Moreover, following inhibition by DIDS of all anion exchangers in HCO 3-free Ringer, the equilibrium potential for Cl does not differ from the membrane potential V 2 . Finally, the logarithmic changes in a i Cl in various experimental conditions correlate well with the simultaneous changes in either basolateral or apical membrane potential. These findings strongly support the presence of Cl channels at the apical and basolateral cell membranes of the proximal tubule. Received: 14 November 1997/Revised: 6 July 1998  相似文献   

6.
The change of intracellular pH of erythrocytes under different experimental conditions was investigated using the pH-sensitive fluorescent dye BCECF and correlated with (ouabain + bumetanide + EGTA)-insensitive K+ efflux and Cl loss. When human erythrocytes were suspended in a physiological NaCl solution (pH o = 7.4), the measured pH i was 7.19 ± 0.04 and remained constant for 30 min. When erythrocytes were transferred into a low ionic strength (LIS) solution, an immediate alkalinization increased the pH i to 7.70 ± 0.15, which was followed by a slower cell acidification. The alkalinization of cells in LIS media was ascribed to a band 3 mediated effect since a rapid loss of approximately 80% of intracellular Cl content was observed, which was sensitive to known anion transport inhibitors. In the case of cellular acidification, a comparison of the calculated H+ influx with the measured unidirectional K+ efflux at different extracellular ionic strengths showed a correlation with a nearly 1:1 stoichiometry. Both fluxes were enhanced by decreasing the ionic strength of the solution resulting in a H+ influx and a K+ efflux in LIS solution of 108.2 ± 20.4 mmol (l cells hr)−1 and 98.7 ± 19.3 mmol (l cells hr)−1, respectively. For bovine and porcine erythrocytes, in LIS media, H+ influx and K+ efflux were of comparable magnitude, but only about 10% of the fluxes observed in human erythrocytes under LIS conditions. Quinacrine, a known inhibitor of the mitochondrial K+(Na+)/H+ exchanger, inhibited the K+ efflux in LIS solution by about 80%. Our results provide evidence for the existence of a K+(Na+)/H+ exchanger in the human erythrocyte membrane. Received: 22 December 1999/Revised: 10 April 2000  相似文献   

7.
Amiloride-sensitive, Na+-dependent, DIDS-insensitive cytoplasmic alkalinization is observed after hypertonic challenge in Ehrlich ascites tumor cells. This was assessed using the fluorescent pH-sensitive probe 2′,7′-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). A parallel increase in the amiloride-sensitive unidirectional Na+ influx is also observed. This indicates that hypertonic challenge activates a Na+/H+ exchanger. Activation occurs after several types of hypertonic challenge, is a graded function of the osmotic challenge, and is temperature-dependent. Observations on single cells reveal a considerable variation in the shrinkage-induced changes in cellular pH i , but the overall picture confirms the results from cell suspensions. Shrinkage-induced alkalinization and recovery of cellular pH after an acid load, is strongly reduced in ATP-depleted cells. Furthermore, it is inhibited by chelerythrine and H-7, inhibitors of protein kinase C (PKC). In contrast, Calyculin A, an inhibitor of protein phosphatases PP1 and PP2A, stimulates shrinkage-induced alkalinization. Osmotic activation of the exchanger is unaffected by removal of calcium from the experimental medium, and by buffering of intracellular free calcium with BAPTA. At 25 mm HCO 3, but not in nominally HCO 3-free medium, Na+/H+ exchange contributes significantly to regulatory volume increase in Ehrlich cells. Under isotonic conditions, the Na+/H+ exchanger is activated by ionomycin, an effect which may be secondary to ionomycin-induced cell shrinkage. Received: 2 March 1995/Revised: 29 September 1995  相似文献   

8.
Extracellular nucleotides modulate renal ion transport. Our previous results in M-1 cortical collecting duct cells indicate that luminal and basolateral ATP via P2Y2 receptors stimulate luminal Ca2+-activated Cl channels and inhibit Na+ transport. Here we address the mechanism of ATP-mediated inhibition of Na+ transport. M-1 cells had a transepithelial voltage (V te ) of −31.4 ± 1.3 mV and a transepithelial resistance (R te ) of 1151 ± 28 Ωcm2. The amiloride-sensitive short circuit current (I sc ) was −28.0 ± 1.1 μA/cm2. The ATP-mediated activation of Cl channels was inhibited when cytosolic Ca2+ increases were blocked with cyclopiazonic acid (CPA). Without CPA the ATP-induced [Ca2+]i increase was paralleled by a rapid and transient R te decrease (297 ± 51 Ωcm2). In the presence of CPA, basolateral ATP led to an R te increase by 144 ± 17 Ωcm2 and decreased V te from −31 ± 2.6 to −26.6 ± 2.5 mV. I sc dropped from −28.6 ± 2.4 to −21.6 ± 1.9 μA/cm2. Similar effects were observed with luminal ATP. In the presence of amiloride, ATP was without effect. This reflects ATP-mediated inhibition of Na+ absorption. Lowering [Ca2+]i by removal of extracellular Ca2+ did not alter the ATP effect. PKC inhibition or activation were without effect. Na+ absorption was activated by pHi alkalinization and inhibited by pHi acidification. ATP slightly acidified M-1 cells by 0.05 ± 0.005 pH units, quantitatively not explaining the ATP-induced effect. In summary this indicates that extracellular ATP via luminal and basolateral P2Y2 receptors inhibits Na+ absorption. This effect is not mediated via [Ca2+]i, does not involve PKC and is to a small part mediated via intracellular acidification. Received: 9 February 2001/Revised: 17 May 2001  相似文献   

9.
The proximal tubule Na+-HCO 3 cotransporter is located in the basolateral plasma membrane and moves Na+, HCO 3, and net negative charge together out of the cell. The presence of charge transport implies that at least two HCO 3 anions are transported for each Na+ cation. The actual ratio is of physiological interest because it determines direction of net transport at a given membrane potential. To determine this ratio, a thermodynamic approach was employed that depends on measuring charge flux through the cotransporter under defined ion and electrical gradients across the basolateral plasma membrane. Cells from an immortalized rat proximal tubule line were grown as confluent monolayer on porous substrate and their luminal plasma membrane was permeabilized with amphotericin B. The electrical properties of these monolayers were measured in a Ussing chamber, and ion flux through the cotransporter was achieved by applying Na+ or HCO 3 concentration gradients across the basolateral plasma membrane. Charge flux through the cotransporter was identified as difference current due to the reversible inhibitor dinitro-stilbene disulfonate. The cotransporter activity was Cl independent; its conductance ranged between 0.12 and 0.23 mS/cm2 and was voltage independent between −60 and +40 mV. Reversal potentials obtained from current-voltage relations in the presence of Na+ gradients were fitted to the thermodynamic equivalent of the Nernst equation for coupled ion transport. The fit yielded a cotransport ratio of 3HCO 3:1Na+. Received: 19 January 1996/Revised: 24 April 1996  相似文献   

10.
High speed video imaging microscopy and the pH-sensitive fluorophore2′,7′,-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) were used to examine acid-base functions of beta-intercalated cells of the rabbit cortical collecting duct. The presence of intercalated cells was established and the properties of apical and basolateral acid-base transporters assessed by monitoring cell pH during acid loading and luminal and basolateral ion substitutions. We showed that treatment of beta-intercalated cells with ammonium chloride (20 mm) induced a profound decrease of their intracellular pH from 6.98 ± 5.93 ± 0.08. pH recovery occurred after different lag periods ranging between 2 to 15 min (0.22 ± 0.04 dpH/dt). We demonstrated that this pH recovery mechanism was independent of basolateral Na+ and apical HCO 3 and K+. It was also not affected by apical and basolateral addition of NEM, by basolateral DIDS and by apical application of the H-KATPase inhibitor SCH28080. The process of pH recovery was however, critically dependent on basolateral HCO 3. These results are best explained by acid-induced insertion and/or activation of chloride-bicarbonate exchangers that are functional properties with their apical analogues. Received: 11 January 1994/Revised: 13 June 1997  相似文献   

11.
Previous squid-axon studies identified a novel K/HCO3 cotransporter that is insensitive to disulfonic stilbene derivatives. This cotransporter presumably responds to intracellular alkali loads by moving K+ and HCO 3 out of the cell, tending to lower intracellular pH (pHi). With an inwardly directed K/HCO3 gradient, the cotransporter mediates a net uptake of alkali (i.e., K+ and HCO 3 influx). Here we test the hypothesis that intracellular quaternary ammonium ions (QA+) inhibit the inwardly directed cotransporter by interacting at the intracellular K+ site. We computed the equivalent HCO 3 influx (J HCO3) mediated by the cotransporter from the rate of pHi increase, as measured with pH-sensitive microelectrodes. We dialyzed axons to pHi 8.0, using a dialysis fluid (DF) free of K+, Na+ and Cl. Our standard artificial seawater (ASW) also lacked Na+, K+ and Cl. After halting dialysis, we introduced an ASW containing 437 mm K+ and 0.5% CO2/12 mm HCO 3, which (i) caused membrane potential to become transiently very positive, and (ii) caused a rapid pHi decrease, due to CO2 influx, followed by a slower plateau-phase pHi increase, due to inward cotransport of K+ and HCO 3. With no QA+ in the DF, J HCO3 was ∼58 pmole cm−2 sec−1. With 400 mm tetraethylammonium (TEA+) in the DF, J HCO3 was virtually zero. The apparent K i for intracellular TEA+ was ∼78 mm, more than two orders of magnitude greater than that obtained by others for inhibition of K+ channels. Introducing 100 mm inhibitor into the DF reduced J HCO3 to ∼20 pmole cm−2 sec−1 for tetramethylammonium (TMA+), ∼24 for TEA+, ∼10 for tetrapropylammonium (TPA+), and virtually zero for tetrabutylammonium (TBA+). The apparent K i value for TBA+ is ∼0.86 mm. The most potent inhibitor was phenyl-propyltetraethylammonium (PPTEA+), with an apparent K i of ∼91 μm. Thus, trans-side quaternary ammonium ions inhibit K/HCO3 influx in the potency sequence PPTEA+ > TBA+ > TPA+ > TEA+≅ TMA+. The identification of inhibitors of the K/HCO3 cotransporter, for which no inhibitors previously existed, will facilitate the study of this transporter. Received: 21 November 2000/Revised: 14 May 2001  相似文献   

12.
We have previously partially purified the basolateral Na+/HCO 3 cotransporter from rabbit renal cortex and this resulted in a 400-fold purification, and an SDS-PAGE analysis showed an enhancement of a protein band with a MW of approximately 56 kDa. We developed polyclonal antibodies against the Na+/HCO 3 cotransporter by immunizing Dutch-belted rabbits with a partially purified protein fraction enriched in cotransporter activity. Western blot analysis of renal cortical basolateral membranes and of solubilized basolateral membrane proteins showed that the antibodies recognized a protein with a MW of approximately 56 kDa. The specificity of the purified antibodies against the Na+/HCO 3 cotransporter was tested by immunoprecipitation. Solubilized basolateral membrane proteins enriched in Na+/HCO 3 cotransporter activity were incubated with the purified antibody or with the preimmune IgG and then reconstituted in proteoliposomes. The purified antibody fraction caused a concentration-dependent inhibition of the Na+/HCO 3 cotransporter activity, while the preimmune IgG failed to elicit any change. The inhibitory effect of the antibody was of the same magnitude whether it was added prior to (inside) or after (outside) reconstitution in proteoliposomes. In the presence of the substrates (NaHCO3 or Na2CO3) for the cotransporter, the inhibitory effect of the antibody on cotransporter activity was significantly blunted as compared with the inhibition observed in the absence of substrates. Western blot analysis of rabbit kidneys showed that the antibodies recognized strongly a 56 kDa protein band in microsomes of the inner stripe of outer medulla and inner medulla, but not in the outer stripe of outer medulla. A 56 kDa protein band was recognized in microsomes of the stomach, liver, esophagus, and small intestine but was not detected in red blood cell membranes. Localization of the Na+/HCO 3 cotransporter protein by immunogold technique revealed specific labeling of the cotransporter on the basolateral membranes of the proximal tubules, but not in the brush border membranes. These results demonstrate that the polyclonal antibodies against the 56 kDa basolateral protein inhibit the activity of the Na+/HCO 3 cotransporter suggesting that the 56 kDa protein represents the cotransporter or a component thereof. These antibodies interact at or near the substrate binding sites. The Na+/HCO cotransporter protein is expressed in different regions of the kidneys and in other tissues. Received: 27 January 1996/Revised: 23 July 1996  相似文献   

13.
MDCK cells display several acid-base transport systems found in intercalated cells, such as Na+-H+ exchange, H+–K+ ATPase and Cl/HCO 3 exchange. In this work we studied the functional activity of a vacuolar H+-ATPase in MDCK cells and its chloride dependence. We measured intracellular pH (pHi) in monolayers grown on glass cover slips utilizing the pH sensitive probe BCECF. To analyze the functional activity of the H+ transporters we observed the intracellular alkalinization in response to an acute acid load due to a 20 mm NH+ 4 pulse, and calculated the initial rate of pHi recovery (dpHi/dt). The cells have a basal pHi of 7.17 ± 0.01 (n= 23) and control dpHi/dt of 0.121 ± 0.006 (n= 23) pHi units/min. This pHi recovery rate is markedly decreased when Na+ was removed, to 0.069 ± 0.004 (n= 16). It was further reduced to 0.042 ± 0.005 (n= 12) when concanamycin 4.6 × 10−8 m (a specific inhibitor of the vacuolar H+-ATPase) was added to the zero Na+ solution. When using a solution with zero Na+, low K+ (0.5 mm) plus concanamycin, pHi recovery fell again, significantly, to 0.023 ± 0.006 (n= 14) as expected in the presence of a H+–K+-ATPase. This result was confirmed by the use of 5 × 10−5 m Schering 28080. The Na+ independent pHi recovery was significantly reduced from 0.069 ± 0.004 to 0.042 ± 0.004 (n= 12) when NPPB 10−5 m (a specific blocker of Cl channels in renal tubules) was utilized. When the cells were preincubated in 0 Cl/normal Na+ solution for 8 min. before the ammonium pulse, the pHi recovery fell from 0.069 ± 0.004 to 0.041 ± 0.007 (n= 12) in a Na+ and Cl free solution. From these results we conclude that: (i) MDCK cells have two Na+-independent mechanisms of pHi recovery, a concanamycin sensitive H+-ATPase and a K+ dependent, Schering 28080 sensitive H+–K+ ATPase; and, (ii) pHi recovery in Na+-free medium depends on the presence of a chloride current which can be blocked by NPPB and impaired by preincubation in Cl–free medium. This finding supports a role for chloride in the function of the H+ ATPase, which might be electrical shunting or a biochemical interaction. Received: 24 October 1997/Revised: 19 February 1998  相似文献   

14.
Since the major mechanisms responsible for regulation of intracellular pH of enterocytes are located in the basolateral membrane, respective effects may be expected on pH in the compartment near the basolateral membrane. A method was established to estimate the pH at the basolateral membrane (pH b ) of isolated caecal epithelia of guinea pig using pH-sensitive fluorescein attached to lectin (lens culinaris). In the presence of bicarbonate and a perfusion solution-pH of 7.4, pH b was 7.70 ± 0.15. In the absence of bicarbonate or chloride as well as by inhibition of the basolateral Cl-HCO 3 exchange with H2-DIDS, pH b was reduced near to solution-pH. Inhibition of the basolateral Na+-H+ exchanger by adding a sodium- and bicarbonate-free, low-buffered solution increased pH b . Decrease of pH of serosal perfusion solution to 6.4 provoked a similar decrease of pH b to solution pH. Short-chain fatty acids (SCFA) added to the mucosal solution caused a slight decrease of pH b . SCFA added to the serosal side alkalized pH b . However, in the presence of bicarbonate pH b returned quickly to the initial pH b , and after removal of SCFA a transient acidification of pH b was seen. These responses could not be inhibited by MIA or H2-DIDS. We conclude that no constant pH-microclimate exists at the basolateral side. The regulation of the intracellular pH of enterocytes reflects pH b . The slightly alkaline pH b is due to the bicarbonate efflux. Data support the presence of an SCFA-HCO 3 exchange. Received: 17 December 1998/Revised: 24 February 1999  相似文献   

15.
The chloride conductance of inner medullary collecting duct cells (mIMCD-3 cell line) has been investigated using the whole cell configuration of the patch clamp technique. Seventy-seven percent of cells were chloride selective when measured with a NaCl-rich bathing solution and a TEACl-rich pipette solution. Seventy-five percent of chloride-selective cells (90/144) had whole cell currents which exhibited an outwardly-rectifying (OR) current-voltage (I/V) relationship, while the remaining cells exhibited a linear (L) I/V relationship. The properties of the OR and L chloride currents were distinct. OR currents (mean current densities at ±60 mV of 66 ± 5 pA/pF and 44 ± 3 pA/pF), were time- and voltage-independent with an anion selectivity (from calculated permeability ratios) of SCN (2.3), NO 3 (1.8), ClO 4 (1.7), Br (1.7), I (1.6), Cl (1.0), HCO 3 (0.5), gluconate (0.2). Bath additions of NPPB, flufenamate, glibenclamide (all 100 μm) and DIDS (500 μm) produced varying degrees of block of OR currents with NPPB being the most potent (IC50 of approximately 50 μm) while DIDS was the least effective. Linear chloride currents had similar current densities to the OR chloride currents and were also time- and voltage-independent. The anion selectivity sequence was SCN (2.5), NO 3 (1.9), Br (1.4), I (1.1), Cl (1.0), ClO 4 (0.5), HCO 3 (0.5), gluconate (0.3). In contrast to the OR conductance, glibenclamide was the most potent and DIDS the least potent blocker of L currents. An IC50 of >100 μm was observed for NPPB block. Neither OR of L chloride currents were affected by acutely or chronically increased intracellular cAMP and were not affected when intracellular Ca2+ levels were increased or decreased. The molecular identity and physiological role of OR and linear currents in mIMCD-3 cells are discussed. Received: 13 June 1995/Revised: 15 September 1995  相似文献   

16.
Hyperthermia induces transient changes in [Na+] i and [K+] i in mammalian cells. Since Cl flux is coupled with Na+ and K+ in several processes, including cell volume control, we have measured the effects of heat on [Cl] i using the chloride indicator, MQAE, with flow cytometry. The mean basal level of [Cl] i in Chinese hamster ovary cells was 12 mm. Cells heated at 42.0° or 45.0°C for 30 min had about a 2.5-fold increase in [Cl] i above unheated control values when measured immediately after heating. There was about a 3-fold decrease in [Na+] i under the same conditions, as measured by Sodium Green. The magnitude of the increase in [Cl] i depended upon time and temperature. The [Cl] i recovered in a time-dependent fashion to control values by 30 min after heating. When cells were heated at 45.0°C for 30 min in the presence of 1.5 mm furosemide, the heat-induced [Cl] i increase was completely blocked. Since furosemide inhibits the Na+/K+/2Cl cotransporter, Cl channels, and even ClHCO3 exchange, these ion transporters may be involved in the heat-induced increase in [Cl] i . Received: 15 June 1995/Revised: 9 April 1996  相似文献   

17.
The effects of aldosterone and vasopressin on Cl transport were investigated in a mouse cortical collecting duct (mpkCCD) cell line derived from a transgenic mouse carrying the SV40 large T antigen driven by the proximal regulatory sequences of the L-pyruvate kinase gene. The cells had features of a tight epithelium and expressed the amiloride-sensitive sodium channel and the cystic fibrosis transmembrane conductance regulator (CFTR) genes. dD-arginine vasopressin (dDAVP) caused a rapid, dose-dependent, increase in short-circuit current (I sc ). Experiments with ion channel blockers and apical ion substitution showed that the current represented amiloride-sensitive Na+ and 5-nitro-2-(3-phenylpropylamino)benzoate-sensitive and glibenclamide-sensitive Cl fluxes. Aldosterone (5 × 10−7 m for 3 or 24 hr) stimulated I sc and apical-to-basal 22Na+ flux by 3-fold. 36Cl flux studies showed that dDAVP and aldosterone stimulated net Cl reabsorption and that dDAVP potentiated the action of aldosterone on Cl transport. Whereas aldosterone affected only the apical-to-basal 36Cl flux, dDAVP mainly increased the apical-to-basal Cl flux and the basal-to-apical flux of Cl to a lesser extent. These results suggest that the discrete dDAVP-elicited Cl secretion involves the CFTR and that dDAVP and aldosterone may affect in different ways the observed increased Cl reabsorption in this model of mouse cultured cortical collecting duct cells. Received: 8 January 1998/Revised: 25 March 1998  相似文献   

18.
The rat primary cultured-airway monolayer had been an excellent model for deciphering the ion channel after nystatin permeabilization of its basolateral or apical membrane (Hwang et al., 1996). After apical membrane permeabilization of rat primary cultured-airway monolayer, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS)-sensitive outwardly rectifying depolarization-induced Cl (BORDIC) currents were observed across the basolateral membrane in symmetrical NMG-Cl solution in this study. No significant Cl current induced by the application of voltage clamping was observed across the apical membrane in symmetrical NMG-Cl solution after basolateral membrane permeabilization. The halide permeability sequence for BORDIC current was Br≒ I > Cl. BORDIC current was not affected by basolaterally applied bumetanide (0.5 mm). Basolateral DIDS (0.2 mm) but not apical DIDS inhibited CFTR mediated short-circuit current (I sc ) in an intact monolayer of rat airway epithelia, a T84 human colonal epithelial cell line, and a Calu-3 human airway epithelial cell line. This is the first report showing that depolarization induced Cl current is present on the basolateral membrane of airway epithelia. Received: 7 October 1999/Revised: 24 April 2000  相似文献   

19.
In tilapia (Oreochromis mossambicus) intestine, Mg2+ transport across the epithelium involves a transcellular, Na+- and Na+/K+-ATPase dependent pathway. In our search for the Mg2+ extrusion mechanism of the basolateral compartment of the enterocyte, we could exclude Na+/Mg2+ antiport or ATP-driven transport. Evidence is provided, however, that Mg2+ movement across the membrane is coupled to anion transport. In basolateral plasma membrane vesicles, an inwardly directed Cl gradient stimulated Mg2+ uptake (as followed with the radionuclide 27Mg) twofold. As Cl-stimulated uptake was inhibited by the detergent saponin and by the ionophore A23187, Mg2+ may be accumulated intravesicularly above chemical equilibrium. Valinomycin did not affect uptake, suggesting that electroneutral symport activity occurred. The involvement of anion coupled transport was further indicated by the inhibition of Mg2+ uptake by the stilbene derivative, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid. Kinetic analyses of the Cl-stimulated Mg2+ uptake yielded a K m (Mg2+) of 6.08 ± 1.29 mmol · l−1 and a K m (Cl) of 26.5 ± 6.5 mmol · l−1, compatible with transport activity at intracellular Mg2+- and Cl-levels. We propose that Mg2+ absorption in the tilapia intestine involves an electrically neutral anion symport mechanism. Received: 19 January 1996/Revised: 1 August 1996  相似文献   

20.
The aim of the present study was to investigate the roles of Ca2+ and protein tyrosine kinase (PTK) in the insulin action on cell volume in fetal rat (20-day gestational age) type II pneumocytes. Insulin (100 nm) increased cell volume in the presence of extracellular Ca2+ (1 mm), while cell shrinkage was induced by insulin in the absence of extracellular Ca2+ (<1 nm). This insulin action in a Ca2+-containing solution was completely blocked by co-application of bumetanide (50 μm, an inhibitor of Na+/K+/2Cl cotransporter) and amiloride (10 μm, an inhibitor of epithelial Na+ channel), but not by the individual application of either bumetanide or amiloride. On the other hand, the insulin action on cell volume in a Ca2+-free solution was completely blocked by quinine (1 mm, a blocker of Ca2+-activated K+ channel), but not by bumetanide and/or amiloride. These observations suggest that insulin activates an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter in the presence of 1 mm extracellular Ca2+, that the stimulatory action of insulin on an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter requires Ca2+, and that in a Ca2+-free solution insulin activates a quinine-sensitive K+ channel but not in the presence of 1 mm Ca2+. The insulin action on cell volume in a Ca2+-free solution was almost completely blocked by treatment with BAPTA (10 μm) or thapsigargin (1 μM, an inhibitor of Ca2+-ATPase which depletes the intracellular Ca2+ pool). Further, lavendustin A (10 μm, an inhibitor of receptor type PTK) blocked the insulin action in a Ca2+-free solution. These observations suggest that the stimulatory action of insulin on a quinine-sensitive K+ channel is mediated through PTK activity in a cytosolic Ca2+-dependent manner. Lavendustin A, further, completely blocked the activity of the Na+/K+/2Cl cotransporter in a Ca2+-free solution, but only partially blocked the activity of the Na+/K+/2Cl cotransporter in the presence of 1 mm Ca2+. This observation suggests that the activity of the Na+/K+/2Cl cotransporter is maintained through two different pathways; one is a PTK-dependent, Ca2+-independent pathway and the other is a PTK-independent, Ca2+-dependent pathway. Further, we observed that removal of extracellular Ca2+ caused cell shrinkage by diminishing the activity of the amiloride-sensitive Na+ channel and the bumetanide-sensitive Na+/K+/2Cl cotransporter, and that removal of extracellular Ca2+ abolished the activity of the quinine-sensitive K+ channel. We conclude that the cell shrinkage induced by removal of extracellular Ca2+ results from diverse effects on the cotransporter and Na+ and K+ channels. Received: 2 September 1998/Revised: 30 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号