首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive high-performance liquid chromatographic (HPLC) method with ultraviolet absorption detection (292 nm) was developed and validated for the determination of the new phosphodiesterase V inhibitor, DA-8159 (DA), in human plasma and urine. A single step liquid-liquid extraction procedure using ethyl ether was performed to recover DA and the internal standard (sildenafil citrate) from 1.0 ml of biological matrices combined with 200 microl of 0.1M sodium carbonate buffer. A Capcell Pak C18 UG120 column (150 mm x 4.6 mm I.D., 5 microm) was used as a stationary phase and the mobile phase consisted of 30% acetonitrile and 70% 20mM potassium phosphate buffer (pH 4.5) at a flow rate of 1.0 ml/min. The lower limit for quantification was 5 ng/ml for plasma and 10 ng/ml for urine samples. Within- and between-run accuracy and precision were < or =15 and < or =10%, respectively, in both plasma and urine samples. The recovery of DA from human plasma and urine was greater than 70%. Separate stability studies showed that DA is stable under the conditions of analysis. This validated assay was used for the pharmacokinetic analysis of DA during a phase I, rising dose study.  相似文献   

3.
The simultaneous isolation and determination of mitoxantrone (Novantrone ®) and its two known metabolites (the mono- and dicarboxylic metabolites) were carried out using a high-performance liquid chromatographic (HPLC) system equipped with an automatic pre-column-switching system that permits drug analysis by direct injection of biological samples. Plasma or urine samples were injected directly on to an enrichment pre-column flushed with methanol-water (5:95, v/v) as the mobile phase. The maximum amount of endogenous water-soluble components was removed from biological samples within 9 min. Drugs specifically adsorbed on the pre-column were back-flushed on to an analytical column (Nucleosil C18, 250x4.6 mm I.D.) with 1.6 M ammonium formate buffer (pH 4.0) (2.5% formic acid) containing 20% acetonitrile. Detection was effected at 655 nm. Chromatographic analysis was performed within 12 min. The detection limit of the method was about 4 ng/ml for urine and 10 ng/ml for plasma samples. The precision ranged from 3 to 11% depending on the amount of compound studied. This technique was applied to the monitoring of mitoxantrone in plasma and to the quantification of the unchanged compound and its two metabolites in urine from patients receiving 14 mg/m2 of mitoxantrone by intravenous infusion for 10 min.  相似文献   

4.
A novel high-performance liquid chromatography (HPLC) assay for the estimation of formoterol in urine samples was developed and validated. A solid phase extraction (SPE) using Oasis HLB was optimised to isolate formoterol from a urine matrix followed by HPLC with UV detection. This extraction procedure concentrated the final analyte forty times so that UV detection can be used to determine even a low concentration of formoterol in urine samples. The urinary assay was performed in accordance with FDA and ICH regulations for the validation of bioanalytical samples. The samples were injected onto a C18 Spherisorb (250 mm x 4.6 mm x 5 microm) analytical column maintained at 30 degrees C. The mobile phase consisted of 5 mM of potassium dihydrogen orthophosphate buffer (adjusted to pH 3 with ortho phosphoric acid):acetonitrile (ACN) (70:30, v/v), and the formoterol peak was detected at wavelength 214 nm. The extraction recovery of formoterol from the urine sample was >95%. The calibration curve was linear (r2=0.99) over formoterol concentrations ranging from 1.5 to 25 ng/mL (n=6). The method had an accuracy of >92% and intra and inter-day precision CV% of <3.9% and <2.2%, respectively, at three different concentrations low, medium and high (10, 15, 20 ng/mL). The limit of quantification (LOQ) for formoterol was found to be 1.50 ng/mL. The accuracy and precision at the LOQ level were 95% and %CV <3.7% (n=10), respectively. The method reported is simple, reliable, precise, and accurate and has the capacity to be used for determination of formoterol in urine samples.  相似文献   

5.
A simple high-performance liquid chromatography method for the determination of the antiviral agent ribavirin in human plasma was developed and validated. The method involved solid-phase extraction on phenyl boronic acid cartridges, a reversed-phase liquid chromatography with a Waters Atlantis dC18 (150 mm x 3.9 mm, 5 microm) column and a mobile phase consisting of 10 mM potassium phosphate buffer (pH 4.0), and ultraviolet detection at 207 nm. This assay proved to be sensitive (lower limit of quantification of 0.05 microg/ml), linear (correlation coefficients >or=0.997), specific (no interference with various potentially co-administrated drugs), reproducible (both intra-day and inter-day coefficients of variation 相似文献   

6.
A sensitive and selective high-performance liquid chromatographic (HPLC) method was developed for the determination of pramipexole in human plasma and urine. Plasma/urine is made alkaline before pramipexole and BHT-920 (internal standard) are extracted by ethyl ether and back-extracted with a solution that contains heptanesulfonic acid. Separation is achieved by ion-pair chromatography on a Zorbax Rx C8 column with electrochemical detection at 0.6 V for plasma and ultraviolet detection at 286 nm for urine. The retention times of pramipexole and internal standard are approximately 14.4 and 10.7 min, respectively. The assay is linear in concentration ranges of 50 to 15 000 pg/ml (plasma) and 10 to 10 000 ng/ml (urine). The correlation coefficients are greater than 0.9992 for all curves. For the plasma method, the analysis of pooled quality controls (300, 3000, and 10 000 pg/ml) demonstrates excellent precision with relative standard deviations (R.S.D.) (n=18) of 1.1%, 2.3%, and 6.8%, respectively. For the urine method, quality control pools prepared at 30, 300, and 3000 ng/ml had R.S.D. values (n=18) of 2.9%, 1.7%, and 3.0%, respectively. The plasma and urine controls were stable for more than nine and three months, respectively. The mean recoveries for pramipexole and internal standard from plasma were 97.7% and 98.2%, respectively. The mean recoveries for pramipexole and internal standard from urine were 89.8% and 95.1%, respectively. The method is accurate with all intra-day (n=6) and overall (n=18) mean values for the quality control samples being less than 6.4 and 5.8% from theoretical for plasma and urine, respectively.  相似文献   

7.
The present work reports capillary liquid chromatographic column switching methodology tailored for fast, sensitive and selective determination of 1-hydroxypyrene (1-OHP) in human urine using micro-electrospray ionization time-of-flight mass spectrometric detection. Samples (100 microl) of deconjugated, water diluted and filtered urine samples were loaded onto a 150 microm I.D.x 30 mm 10 microm Kromasil C(18) pre-column, providing on-line sample clean-up and analyte enrichment, prior to back flushed elution onto a 150 microm I.D.x 100 mm 3.5 microm Kromasil C(18) analytical column. Loading flow rates up to 100 microl/min in addition to the use of isocratic elution by a mobile phase composition of acetonitrile/water (70/30, v/v) containing 5 mM ammonium acetate provided elution of 1-OHP within 5.5 min and a total analysis time of less than 15 min with manual operation. Ionization was performed in the negative mode and 1-OHP was observed as [M-H](-) at m/z 217.08. The method was validated over the concentration range 0.2-40 ng/ml 1-OHP in pre-treated urine, yielding a coefficient of correlation of 0.997. The within-assay (n=6) and between-assay (n=6) precisions were in the range 6.4-7.3 and 7.0-8.1%, respectively, and the recoveries were in the range 96.2-97.5 within the investigated concentration range. The method mass limit of detection was 2 pg, corresponding to a 1-OHP concentration limit of detection of 20 pg/ml (0.09 nmol/l) diluted urine or 0.3 ng/ml (1.35 nmol/l) urine.  相似文献   

8.
A sensitive method was developed to determine fexofenadine in human plasma and urine by HPLC-electrospray mass spectrometry with MDL 026042 as internal standard. Extraction was carried out on C18 solid-phase extraction cartridges. The mobile phases used for HPLC were: (A) 12 mM ammonium acetate in water and (B) acetonitrile. Chromatographic separation was achieved on a LUNA CN column (10 cm x 2.0 mm I.D., particle size 3 microm) using a linear gradient from 40% B to 60% B in 10 min. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH+ ions, m/z 502.3 for fexofenadine and m/z 530.3 for the internal standard. The limit of quantification achieved with this method was 0.5 ng/ml in plasma and 1.0 ng in 50 microl of urine. The method described was successfully applied to the determination of fexofenadine in human plasma and urine in pharmacokinetic studies.  相似文献   

9.
A sensitive and reproducible high performance liquid chromatography method with UV detection was described for the determination of aesculin in rat plasma. After deproteinization by methanol using metronidazole as internal standard (I.S.), solutes were evaporated to dryness at 40 degrees C under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of mobile phase and a volume of 20 microl was injected into the HPLC for analysis. Solutes were separated on a Diamonsil C18 column (250 mm x 4.6 mm i.d., 5 microm particle size, Dikma) protected by a ODS guard column (10 mm x 4.0 mm i.d., 5 microm particle size), using acetonitrile-0.1% triethylamine solution (adjusted to pH 3.0 using phosphoric acid) (10:90, v/v) as mobile phase (flow-rate 1.0 ml/min), and wavelength of the UV detector was set at 338 nm. No interference from any endogenous substances was observed during the elution of aesculin and internal standard (I.S., metronidazole). The retention times for I.S and aesculin were 10.4 and 12.4 min, respectively. The limit of quantification was evaluated to be 57.4 ng/ml and the limit of detection was 24.0 ng/ml. The method was used in the study of pharmacokinetics of aesculin after intraperitoneal injection (i.p.) administration in rats.  相似文献   

10.
A sensitive, specific, and reproducible high-performance liquid chromatography (HPLC) method with fluorescence detection was developed for determination of lefucoxib in rat plasma, urine, and feces. The method involved liquid-liquid extraction using methyl tert-butyl ether, and celecoxib was used as the internal standard. The chromatographic separation was performed on a Kromasil C18 column (250.0 mm x 4.6 mm, 5.0 microm) with a mobile phase gradient consisting of water and methanol at a flow rate of 1 ml min(-1). The assay was linear in the range of 5.0-1000.0 ng ml(-1) with a correlation coefficient (r) of 0.9994. The limit of quantification was 5.0 ng ml(-1). Inter- and intra-assay precisions were 相似文献   

11.
12.
A highly selective and sensitive method of reversed phase high‐performance liquid chromatography (RP‐HPLC) coupled with resonance Rayleigh scattering (RRS) was developed for the determination of procaine, bupivacaine and tetracaine. Separation of three local anaesthetics was achieved at 35 °C on a C18 column. The mobile phase was 30: 70 (v/v) acetonitrile/triethylamine–phosphoric acid buffer (pH 2.9) at flow rate of 0.3 mL/min. The RRS detection was conducted by taking advantage of the strong RRS enhancement of the local anaesthetics with erythrosine reaction in an acidic medium. Under optimum conditions, the limit of detection (S/N = 3) values were in the range of 2.4–11.2 ng/mL. Recoveries from spiked human urine samples were 95.8%–104.5%. The proposed method applied to the determination of local anaesthetics in human urine achieved satisfactory results. In addition, the mechanism of the reaction is fully discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A fast, simple, and a reliable high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method for the assessment of lipoic acid (LA) and dihydrolipoic acid (DHLA) in plasma was developed using naproxen sodium as an internal standard (IS) and validated according to standard guidelines. Extraction of both analytes and IS from plasma (250 μl) was carried out with a single step liquid-liquid extraction applying dichloromethane. The separated organic layer was dried under stream of nitrogen at 40°C and the residue was reconstituted with the mobile phase. Complete separation of both compounds and IS at 30°C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 9 min using acetonitrile: 0.05 M phosphate buffer (pH 2.4 adjusted with phosphoric acid) (52:48, v/v) as a mobile phase pumped at flow rate of 1.5 ml min(-1) using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification for lipoic acid were 500 pg/ml and 3 ng/ml, and for dihydrolipoic acid were 3 ng/ml and 10 ng/ml, respectively. The absolute recoveries of lipoic acid and dihydrolipoic acid determined on three nominal concentrations were in the range of 93.40-97.06, and 93.00-97.10, respectively. Similarly coefficient of variations (% CV) for both intra-day and inter-day were between 0.829 and 3.097% for lipoic acid and between 1.620 and 5.681% for dihydrolipoic acid, respectively. This validated method was applied for the analysis of lipoic acid/dihydrolipoic acid in the plasma of human volunteers and will be used for the quantification of these compounds in patients with oxidative stress induced pathologies.  相似文献   

14.
This study established ultra-performance liquid chromatography coupled with a photodiode array detector for determining psilocin and its pharmacokinetics in rat plasma after orally administering an extract of Gymnopilus spectabilis. The extract was separated on an ODS C18 column (2.3 μm, 100 mm × 2.1 mm I.D.) by gradient elution with (A) water containing 50mM AcONH(4) and (B) acetonitrile. The wavelength was set at 265 nm and the injection volume was 10 μL. Under these conditions, the calibration curve was linear over the concentration range 0.2-20 μg/mL with a correlation coefficient of r(2)=0.9992. The inter- and intraday precision levels were less than 7% and the accuracies (%) were within the range 92.0-102.5%. The method was sufficiently valid to be applied to a pharmacokinetics study of psilocin in rat plasma. The pharmacokinetic parameters of psilocin in rat plasma after the oral administration of a G. spectabilis extract were as follows: C(max), 0.43 ± 0.12 μg/mL; T(max), 90 ± 2.1 min; AUC(0→t), 1238.3 ± 96.4 (μg/mL) min; and T(1/2), 117.3 ± 40.3 min.  相似文献   

15.
Sugammadex (Bridion?, Merck Sharp & Dohme Corp., Oss, The Netherlands) is a modified γ-cyclodextrin which has the ability to reverse the neuromuscular blockade induced by the steroidal neuromuscular blocking agents rocuronium and vecuronium. The objective of the current study is to describe the bioanalytical methods that have been developed and validated according to US Food and Drug Administration guidelines on bioanalytical method validation, and subsequently applied to determine total sugammadex (i.e., free sugammadex plus sugammadex bound to the neuromuscular blocking agent) in human heparinized plasma, urine and dialysate. Sugammadex was extracted from human plasma and urine using solid phase extraction with Isolute HAX 96-well extraction plates; no extraction was performed on dialysate samples. Samples from plasma, urine, and dialysate were analyzed on a Polaris? C18-A PEEK (polyaryletheretherketone) analytical column (50 mm × 4.6 mm internal diameter, 5 μm) with a linear mobile phase gradient of 0.1% (v/v) formic acid in water:methanol from 70:30 to 20:80. The flow rate was 1 mL/min with a total run time for each injection of 6 min. Tandem mass spectrometric detection was conducted using multiple reaction monitoring under negative ion mode with a turbo ion-spray interface to quantify the concentration of sugammadex. Inter- and intra-assay precision and accuracy were within pre-defined acceptance limits. The presence of rocuronium did not interfere with the assay in plasma, urine or dialysate; similarly, vecuronium did not interfere with the plasma assay (not tested for interference in urine or dialysate). Sugammadex was found to be stable in plasma, urine and dialysate in the short-term at room temperature, in the long-term at -20°C, and after several freeze/thaw cycles. The validated bioanalytical methods developed here have been successfully applied in a series of clinical studies for the determination of total sugammadex in plasma, urine and dialysate.  相似文献   

16.
A sensitive and specific high-performance liquid chromatographic assay with electrospray ionization mass spectrometry detection (LC-ESI-MS) has been developed and validated for the identification and quantification of the novel anticholinergic drug phencynonate in rat blood and urine. The sample pretreatment involves basification and iterative liquid-liquid extraction with ethyl ether-dichloromethane (2:1, v/v) solution, followed by LC separation and positive electrospray ionization mass spectrometry detection. The chromatography was on BetaBasic-18 column (150 mm x 2.1mm i.d., 3 microm). The mobile phase was composed of methanol-water (85:15, v/v), containing 0.5 per thousand formic acid, which was pumped at a flow-rate of 0.2 ml/min. Thiencynonate was selected as the internal standard (IS). Simultaneous MS detection of phencynonate and IS was performed at m/z 358.4 (phencynonate), m/z 364 (thiencynonate), and the selected reaction ion monitoring (SRM) of the two compounds was at 156. Phencynonate eluted at approximately 5.25 min, thiencynonate eluted at approximately 5.10 min and no endogenous materials interfered with their measurement. Linearity was obtained over the concentration range of 1-100 ng/ml in rat blood and 1-500 ng/ml in rat urine. The lower limit of quantification (LLOQ) was reproducible at 1 ng/ml in both of rat blood and urine. The precision measured was obtained from 2.92 to 9.76% in rat blood and 4.17 to 9.76% in rat urine. Extraction recoveries were in the range of 69.57-79.49% in blood and 56.85-64.86% in urine. This method was successfully applied to the identification and quantification of phencynonate in pharmacokinetic studies.  相似文献   

17.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the determination of six β-blockers; atenolol, nadolol, timolol, metoprolol, oxprenolol, and alprenolol.The chromatographic separation was performed using a μBondapack C18 column, a mobile phase of acetonitrile-water (40:60), containing 5 mM KH2PO4/K2HPO4 proved to be optimal at a 1.3 ml/min flow-rate, and a pH of 6.5. The temperature was optimized at 30±0.2°C. The amperometric detector, equipped with a glassy carbon electrode, was operated at 1300 mV versus Ag/AgCl in the direct current mode. The method was applied to the determination of these compounds at two concentration levels: ppm and ppb (ng/ml), obtaining relative standard deviations lower than 5% at ppm levels and lower than 10% at ppb levels, and quantitation limits ranging from 15 ppb to 500 ppb.The method was applied to the screening of β-blockers in spiked urine samples, with a total elution time lower than 12 min, obtaining the best recoveries for timolol and metoprolol (never greater than 93%). These recoveries together with the low limits of quantitation achieved, allows its application to doping analysis in human urine.  相似文献   

18.
A new method for the determination of tranexamic acid (TA) in human plasma using high performance liquid chromatography with tandem mass spectrometric detection was described. TA and the internal standard, methyldopa, was extracted from a 200 l plasma sample by a one-step deproteination using perchloric acid. Chromatographic separation was performed on an Xtrra MS C18 Column (2.1 mm x 100 mm, 3.5 microm) with the mobile phase consisting of 10% acetonitrile in 2 mM ammonium acetate buffer (pH 3.5) at a flow rate of 0.15 ml/min. The total run time was 5 min for each sample. Detection and quantitation was performed by the mass spectrometer using the multiple reaction monitoring of the precursor-product ion pair m/z 158 --> 95 for TA and m/z 212 --> 166 for methyldopa, respectively. The method was linear over the concentration range of 0.02-10.00 g/ml with lower limit of quantification of 0.02 microg/ml for TA. The intra- and inter-day precision was less than 11% and accuracy ranged -10.88 to 11.35% at the TA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of TA in 12 healthy subjects.  相似文献   

19.
CI-980, a 1-deaza-7,8-dihydropteridine, is a novel anticancer agent that is a potent mitotic inhibitor acting as a tubulin binder similar to the vinca alkaloids. CI-980 has shown equivalent or superior anticancer activity in vitro compared to vincristine and retains full activity against vincristine resistant tumors in vitro. A high-performance liquid chromatographic (HPLC) assay was developed and validated for human plasma and urine to support Phase 1 clinical trials. CI-980 and PD 080658, internal standard, were isolated from 2-ml samples of human plasma and urine by solid-phase extraction with Bond-Elut C18 cartridges. Urine samples must be pretreated with bovine serum albumin (BSA) to minimize the binding of CI-980 to glass and some plastics. The eluate from the cartridges for both matrices was evaporated to dryness and taken up in mobile phase. Zorbax RX C18 columns, mobile phase buffer of 10 mM ammonium dihydrogen phosphate at pH 7.5 and a flow--rate of 0.75 ml/min were used for both matrices. Column dimensions, column temperature and mobile phase acetonitrile-buffer ratio were 300 mm × 4.6 mm I.D., 30°C and 38:62 (v/v), respectively, for the plasma assay and 250 mm × 4.6 mm I.D., 35°C and 40:60 (v/v), respectively, for the urine assay. Column effluent was monitored fluorometrically for the plasma method using excitation and emission wavelengths of 388 nm and 473 nm, respectively. Ultraviolet detection at 380 nm was used for the urine method. Peak-area ratios were proportional to CI-980 concentrations from 0.2 to 25 ng/ml and 1 to 100 ng/ml for plasma and urine, respectively. CI-980 in water will bind to glass and plastics but not PTFE or stainless steel. Urine calibration standards were frozen prior to use in order to compensate for loss of CI-980 due to freezing in this matrix. The accuracy of the assay was within 4.7%, with a precision of 5.6% for both matrices. Recoveries ranged from 93.8 to 102% and 90.7 to 92.3% for plasma and urine, respectively. CI-980 was stable in plasma and urine for at least 275 and 217 days, respectively, when stored at −70°C. The assay is suitable for studying the clinical pharmacokinetics of CI-980.  相似文献   

20.
Ezetimibe (Ezetrol) is a novel cholesterol lowering drug which disposition is not fully understood in man. We developed a selective and high-sensitive assay to measure serum concentration-time profiles, renal and fecal elimination of ezetimibe in pharmacokinetic studies. Ezetimibe glucuronide, the major metabolite of ezetimibe was determined by enzymatic degradation to the parent compound. Ezetimibe was measured after extraction with methyl tert-butyl ether using 4-hydroxychalcone as internal standard and liquid chromatography coupled via an APCI interface with tandem mass spectrometry (LC-MS/MS) for detection. The chromatography (column XTerra) MS, C(18), 2.1 mm x 100 mm, particle size 3.5 microm) was done isocratically with acetonitrile/water (60/40, v/v; flow rate 200 microl/min). The MS/MS analysis was performed in the negative ion mode (m/z transition: ezetimibe 408-271, internal standard 223-117). The validation ranges for ezetimibe and total ezetimibe were as follows: serum 0.0001-0.015 microg/ml and 0.001-0.2 microg/ml; urine and fecal homogenate 0.025-10 microg/ml and 0.1-20 mg/ml, respectively. The assay was successfully applied to measure ezetimibe disposition in two subjects genotyped for the hepatic uptake transporter SLCO1B1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号