首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Restoration of blood flow to ischemic myocardial tissue results in an increase in the production of oxygen radicals. Highly reactive, free radical species have the potential to damage cellular components. Clearly, maintenance of cellular viability is dependent, in part, on the removal of altered protein. The proteasome is a major intracellular proteolytic system which degrades oxidized and ubiquitinated forms of protein. Utilizing an in vivo rat model, we demonstrate that coronary occlusion/reperfusion resulted in declines in chymotrypsin-like, peptidylglutamyl-peptide hydrolase, and trypsin-like activities of the proteasome as assayed in cytosolic extracts. Analysis of purified 20 S proteasome revealed that declines in peptidase activities were accompanied by oxidative modification of the protein. We provide conclusive evidence that, upon coronary occlusion/reperfusion, the lipid peroxidation product 4-hydroxy-2-nonenal selectively modifies 20 S proteasome alpha-like subunits iota, C3, and an isoform of XAPC7. Occlusion/reperfusion-induced declines in trypsin-like activity were largely preserved upon proteasome purification. In contrast, loss in chymotrypsin-like and peptidylglutamyl-peptide hydrolase activities observed in cytosolic extracts were not evident upon purification. Thus, decreases in proteasome activity are likely due to both direct oxidative modification of the enzyme and inhibition of fluorogenic peptide hydrolysis by endogenous cytosolic inhibitory protein(s) and/or substrate(s). Along with inhibition of the proteasome, increases in cytosolic levels of oxidized and ubiquitinated protein(s) were observed. Taken together, our findings provide insight into potential mechanisms of coronary occlusion/reperfusion-induced proteasome inactivation and cellular consequences of these events.  相似文献   

2.
Using a culture of cardiomyocytes it has been shown, that a well-known inhibitor of autophagy, N-3-methyladenine causes a 1.4 fold increase (p = 0.023) of the chymotrypsin-like activity, a 1.5 fold increase (p = 0.09) of the peptidyl-glutamyl peptide-hydrolyzing activity and 1.5 fold decrease (p = 0.07) of the trypsin-like activity of the proteasome. N-3-methyladenine in a dose-dependent manner inhibits chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of the purified 20S proteasome, but activates it trypsin-like activity. Chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of the 26S proteasome from proteasome fraction II did change in the same way, as in the case of 20S proteasome, but trypsin-like activity decreased. Using the above method of determining ribonuclease activity, we have shown, that N-3-methyladenine and clasto-lactacystin b-lactone inhibit the RNase activity of the proteasome. Specific proteasome inhibitor exhibits more powerful action, almost completely preventing RNA of actin and myosin from degradation. These data show a multitarget action of N-3-methyladenine, resulting in changes of peptidase and ribonuclease activity of the proteasome.  相似文献   

3.
The 20S proteasome was purified from oocytes of the starfish Asterina pectinifera and its enzymatic properties were investigated. The chymotrypsin-like activities were potently inhibited by PSI as well as MG115, whereas the trypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were not or only weakly inhibited by PSI and MG115. The inhibitory ability of MG115 toward germinal vesicle breakdown (GVBD) coincided with those toward the trypsin-like and PGPH activities, and PSI showed no inhibitory effect on GVBD. We have previously reported that the inhibition pattern toward GVBD of peptidyl-argininals, which potently inhibited the proteasomal trypsin-like activity rather than the chymotrypsin-like activity, correlated with the inhibition pattern toward the chymotrypsin-like activity of the proteasome. These results, together with the peptidyl-argininals scarcely inhibiting the PGPH activity at concentrations sufficient for the inhibition toward GVBD, indicate that both the chymotrypsin-like and trypsin-like activities, but not the PGPH activity, of the proteasome are responsible for degradation of the physiological substrate during starfish oocyte maturation. It was also suggested that the inhibition of a single catalytic site of the proteasome is not sufficient for prevention of the proteasomal function.  相似文献   

4.
Proteasome inactivation upon aging and on oxidation-effect of HSP 90   总被引:2,自引:0,他引:2  
Increases of oxidatively modified protein in the cell have been associated with the aging process. Such an accumulation of damaged protein may be the result of increase in the rate of protein oxidation and/or decrease in the rate of degradation of oxidized protein. The multicatalytic proteinase or proteasome is known to be the major proteolytic system involved in the removal of oxidized protein. We have reported that, after isolation of the 20S proteasome from the liver of young and old male Fischer 344 rat, out of the three peptidase activities (chymotrypsin-like, trypsin-like and peptidyl-glutamyl peptide hydrolase) we assayed with fluorogenic peptides, the peptidyl-glutamyl peptide hydrolase activity was declining with age to a value approximately 50% of that observed for protease purified from young rats. The proteasome was subjected to metal catalyzed oxidation to determine the susceptibility of the different peptidase activities to oxidative inactivation. Both trypsin-like and peptidyl-glutamyl peptide hydrolase activities were found sensitive to oxidation. Treatment of the proteasome with 4-hydroxy-2-nonenal, a major lipid peroxidation product, was also found to inactivate the trypsin-like activity. However, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation in proteasome preparations contaminated with HSP 90, a protein that often copurifies with the proteasome. Upon addition of HSP 90 to pure 20S active proteasome, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation and from inactivation by treatment with 4-hydroxy-2-nonenal. These results suggest a possible intervention of HSP 90 in response to oxidative stress in preventing the inactivation of the proteasome by oxidative damage. Abbreviations: AAF-amc – Ala-Ala-Phe-7-amido-4-methylcoumarin; LSTR-amc – N-t-Boc-Leu-Ser-Thr-Arg-7-amido-4-methylcoumarin; LLE-na – Leu-Leu-Glu-b-naphthylamide; HSP 90: heat shock protein 90, MCP – multicatalytic proteinase or 20S proteasome.  相似文献   

5.
Measurement of proteasome activity is fast becoming a commonly used assay in many laboratories. The most common method to measure proteasome activity involves measuring the release of fluorescent tags from peptide substrates in black microplates. Comparisons of black plates used for measuring fluorescence with different properties show that the microplate properties significantly affect the measured activities of the proteasome. The microplate that gave the highest reading of trypsin-like activity of the purified 20S proteasome gave the lowest reading of chymotrypsin-like activity of the 20S proteasome. Plates with medium binding surfaces from two different companies showed an approximately 2-fold difference in caspase-like activity for purified 20S proteasomes. Even standard curves generated using free 7-amino-4-methylcoumarin (AMC) were affected by the microplate used. As such, significantly different proteasome activities, as measured in nmol AMC released/mg/min, were obtained for purified 20S proteasomes as well as crude heart and liver samples when using different microplates. The naturally occurring molecule betulinic acid activated the chymotrypsin-like proteasome activity in three different plates but did not affect the proteasome activity in the nonbinding surface microplate. These findings suggest that the type of proteasome activity being measured and sample type are important when selecting a microplate.  相似文献   

6.
The 20S proteasome from wheat ( Triticum aestivum L., Yangmai 158) endosperm was purified to apparent homogeneity by three sequential centrifugations and gradient PAGE (GPAGE). The purified 20S proteasome clearly cleaved peptidyl-arylamide bonds in the model synthetic substrates Z-GGL-AMC and Z-GGR-AMC, which are used to reflect chymotrypsin-like and trypsin-like activity, respectively. For both substrates, the optimum pH was 8.0, but the optimum temperatures for chymotrypsin-like and trypsin-like activity were 55 °C and 37 °C, respectively. Both enzyme activities were clearly inhibited by MG115 and PMSF. Polyubiquitinated proteins remained constant from 0 to 7 days after seed imbibition, but caseinolytic activity and the amount of the 20S proteasome associated with the aleurone layer decreased from 1 to 2 days after imbibition (DAI), then increased from 2 to 4 DAI, and reached a maximum at 4 DAI that was retained until 7 DAI. An increase was seen in the mRNA level of the β5 subunit of the 20S proteasome from 2 DAI, and caseinolytic activity and the amount of the 20S proteasome increased from 3 DAI onwards. In addition, the main storage proteins of the wheat endosperm could not be hydrolyzed by the 20S proteasome. The evidence suggests that the main role of the 20S proteasome may not be to degrade massive proteins of the wheat endosperm after seed imbibition.  相似文献   

7.
Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (β1, β2, and β5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS.  相似文献   

8.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.  相似文献   

9.
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.  相似文献   

10.
Mitochondrial impairment, glutathione depletion and oxidative stress have been implicated in the pathogenesis of Parkinson's disease (PD), linked recently to proteasomal dysfunction. Our study analysed how these factors influence the various activities of the proteasome in human SH-SY5Y neuroblastoma cells treated with the PD mimetics MPP+ (a complex 1 inhibitor) or dopamine. Treatment with these toxins led to dose- and time-dependent reductions in ATP and glutathione and also chymotrypsin-like and post-acidic like activities; trypsin-like activity was unaffected. Antioxidants blocked the effects of dopamine, but not MPP+, suggesting that oxidative stress was more important in the dopamine-mediated effects. With MPP+, ATP depletion was a prerequisite for loss of proteasomal activity. Thus in a dopaminergic neuron with complex 1 dysfunction both oxidative stress and ATP depletion will contribute independently to loss of proteasomal function. We show for the first time that addition of MPP+ or dopamine to purified samples of the human 20S proteasome also reduced proteasomal activities; with dopamine being most damaging. As with toxin-treated cells, chymotrypsin-like activity was most sensitive and trypsin-like activity the least sensitive. The observed differential sensitivity of the various proteasomal activities to PD mimetics is novel and its significance needs further study in human cells.  相似文献   

11.
A series of beta-lactam derivatives has been designed and synthesized to inhibit the chymotrypsin-like activity of the human 20S proteasome. The most potent compounds of this new structural class of beta-subunit selective 20S proteasome inhibitors exhibit IC50 values in the low-nanomolar range and show good selectivity over the trypsin-like and post-glutamyl-peptide hydrolytic activities of the enzyme.  相似文献   

12.
We have identified 2-aminobenzylstatine derivatives that inhibit non-covalently the chymotrypsin-like activity of the human 20S proteasome. A structure-based optimisation approach has allowed us to improve the potency of this structural class of proteasome inhibitors from micromolar to nanomolar level. The new derivatives showed good selectivity against the trypsin-like and post-glutamyl-peptide hydrolytic activities of this enzyme.  相似文献   

13.
Tyropeptin A, a potent proteasome inhibitor, was isolated from the culture broth of Kitasatospora sp. MK993-dF2. We synthesized the derivatives of tyropeptin A to enhance its inhibitory potency. Among the synthesized derivatives, the most potent compound, TP-104, exhibited a 20-fold inhibitory potency enhancement for chymotrypsin-like activity of 20S proteasome compared to tyropeptin A. Additionally, TP-110 specifically inhibited the chymotrypsin-like activity, but did not inhibit the post-glutamyl-peptide hydrolyzing (PGPH) and the trypsin-like activities of 20S proteasome. In vitro TP-110 strongly inhibited the growth of various cell lines.  相似文献   

14.
Lovastatin and simvastatin are HMG-CoA reductase inhibitors widely used as antihyperlipidemic drugs, which also display antiproliferative properties. In the present paper, we provide evidence that both lovastatin and simvastatin are modulators of the purified bovine pituitary 20 S proteasome, since they mildly stimulate the chymotrypsin-like activity and inhibit the peptidylglutamylpeptide hydrolyzing activity without interfering with the trypsin-like activity. However, those effects are only observed when the closed ring forms of the drugs are used, while the opened ring form of lovastatin acts as a mild inhibitor of the chymotrypsin like activity. The closed ring form of lovastatin is much more potent as a cytotoxic agent on the Colon-26 (C-26) colon carcinoma cell line than the opened ring form, which is only mildly cytostatic. Moreover, neither the cytotoxic effects nor the effects on 20 S proteasome activities are prevented by mevalonate, which by itself inhibits the trypsin-like activity of the proteasome. Neither the opened ring nor the closed ring form of lovastatin induces an accumulation of ubiquitin-protein conjugates, which is observed after treatment with lactacystin, a selective proteasome inhibitor. In contrast with the opened ring form of lovastatin, the closed ring form induces the disappearance of detectable p27(kip1) from C-26 cells. Altogether, our results indicate that the closed ring form of lovastatin induces cytotoxic effects independent of its HMG-CoA inhibiting activity, however, those effects are mediated by a complex modulation of proteasome activity rather than by inhibition of the 20 S proteasome.  相似文献   

15.
The 20 S proteasome core purified from Saccharomyces cerevisiae is inhibited by reduced glutathione (GSH), cysteine (Cys), or the GSH precursor gamma-glutamylcysteine. Chymotrypsin-like activity was more affected by GSH than trypsin-like activity, whereas the peptidylglutamyl-hydrolyzing activity (caspase-like) was not inhibited by GSH. Cys-sulfenic acid formation in the 20 S core was demonstrated by spectral characterization of the Cys-S(O)-4-nitrobenzo-2-oxa-1,3-diazole adduct, indicating that 20 S proteasome Cys residues might react with reduced sulfhydryls (GSH, Cys, and gamma-glutamylcysteine) through the oxidized Cys-sulfenic acid form. S-Glutahionylation of the 20 S core was demonstrated in vitro by GSH-biotin incorporation and by decreased alkylation with monobromobimane. Compounds such as N-ethylmaleimide (-S-sulfhydril H alkylating), dimedone (-SO sulfenic acid H reactant), or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (either -SH or -SOH reactant) highly inhibited proteasomal chymotrypsin-like activity. In vivo experiments revealed that 20 S proteasome extracted from H(2)O(2)-treated cells showed decreased chymotrypsin-like activity accompanied by S-glutathionylation as demonstrated by GSH release from the 20 S core after reduction with NaBH(4). Moreover, cells pretreated with H(2)O(2) showed decreased reductive capacity assessed by determination of the GSH/oxidized glutathione ratio and increased protein carbonyl levels. The present results indicate that at the physiological level the yeast 20 S proteasome is regulated by its sulfhydryl content, thereby coupling intracellular redox signaling to proteasome-mediated proteolysis.  相似文献   

16.
The yeast 20S proteasome is subject to sulfhydryl redox alterations, such as the oxidation of cysteine residues (Cys-SH) into cysteine sulfenic acid (Cys-SOH), followed by S-glutathionylation (Cys-S-SG). Proteasome S-glutathionylation promotes partial loss of chymotrypsin-like activity and post-acidic cleavage without alteration of the trypsin-like proteasomal activity. Here we show that the 20S proteasome purified from stationary-phase cells was natively S-glutathionylated. Moreover, recombinant glutaredoxin 2 removes glutathione from natively or in vitro S-glutathionylated 20S proteasome, allowing the recovery of chymotrypsin-like activity and post-acidic cleavage. Glutaredoxin 2 deglutathionylase activity was dependent on its entry into the core particle, as demonstrated by stimulating S-glutathionylated proteasome opening. Under these conditions, deglutathionylation of the 20S proteasome and glutaredoxin 2 degradation were increased when compared to non-stimulated samples. Glutaredoxin 2 fragmentation by the 20S proteasome was evaluated by SDS-PAGE and mass spectrometry, and S-glutathionylation was evaluated by either western blot analyses with anti-glutathione IgG or by spectrophotometry with the thiol reactant 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. It was also observed in vivo that glutaredoxin 2 was ubiquitinated in cellular extracts of yeast cells grown in glucose-containing medium. Other cytoplasmic oxido-reductases, namely thioredoxins 1 and 2, were also active in 20S proteasome deglutathionylation by a similar mechanism. These results indicate for the first time that 20S proteasome cysteinyl redox modification is a regulated mechanism coupled to enzymatic deglutathionylase activity.  相似文献   

17.
Proteasome-Glo is a homogeneous cell-based assay of proteasomal chymotrypsin-like, trypsin-like, and caspase-like activities using luminogenic substrates, commercially available from Promega. Here we report that the background activity from cleavage of the substrate of the trypsin-like sites by nonproteasomal proteases in multiple breast and lung cancer cell lines exceeds the activity of the proteasome. We also observed substantial background chymotrypsin-like activity in some cell lines. Thus, Proteasome-Glo assay must be used with caution, and it is necessary to include a specific proteasome inhibitor to determine the background for each proteasome activity.  相似文献   

18.
ATP- and ubiquitin-independent proteolysis by the 20S proteasome is responsible for the selective degradation of oxidized proteins. In vitro, the 20S proteasome shows an increased proteolytic activity toward oxidized polypeptides and the suc-LLVY-MCA peptide specific for its chymotrypsin-like activity. We have analyzed the effect of the intracellular redox status on the chymotrypsin-like activity of the 20S proteasome in human T47D cells overexpressing the detoxifiant enzyme seleno-glutathione peroxidase-1 (GPx-1). We report a 30% decreased activity of the chymotrypsin-like activity in cells overexpressing GPx-1. This phenomenon correlated with a 2-fold increase in IkappaB alpha half-life, a protein whose basal turnover is 20S proteasome-dependent. Following exposure to H2O2, these cells showed a seleno-dependently decreased accumulation of intracellular reactive oxygen species and 20S proteasome chymotrypsin-like activity. Similar results were obtained in HeLa cells transiently overexpressing human GPx-1. Moreover, exposure of HeLa cells to antioxidant compounds reduced the proteasome 20S chymotrypsin-like activity. In contrast, no effects were observed when HeLa cell extracts used to determine proteasome activity were incubated with either reduced or oxidized glutathione. These results suggest that GPx-1 activity or pro-reducing conditions can downregulate basal 20S proteasome activity. Hence, the intracellular redox status, probably through the level of oxidized proteins, is an important element that can either activate or down-regulate the 20S proteasome chymotrypsin-like activity in living cells.  相似文献   

19.
The implication of the released peptides in allosteric effects during protein degradation catalyzed by the proteasome is an important question not completely resolved. We present here data showing modulation of 26S proteasome activities by peptides composed of 5 or 6 natural amino acids that mimic the products generated during protein breakdown. Several of these peptides inhibit the chymotrypsin-like activity of the Xenope 26S proteasome whereas its trypsin-like activity is enhanced. The basic peptides produced competitive inhibition of the chymotrypsin-like activity and the acidic peptides, parabolic inhibition involving two different binding sites. Our results are in agreement with a model involving hypothetical non-catalytic sites interacting with effectors to modulate the peptidase activities of the proteasome. They also suggest that allosteric effects may occur in the proteasome during protein degradation.  相似文献   

20.
The 20 S proteasome is an endoprotease complex that preferentially cleaves peptides C-terminal of hydrophobic, basic, and acidic residues. Recently, we showed that these specific activities, classified as chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide-hydrolyzing (PGPH) activity, are differently affected by Ritonavir, an inhibitor of human immunodeficiency virus-1 protease. Ritonavir competitively inhibited the chymotrypsin-like activity, whereas the trypsin-like activity was enhanced. Here we demonstrate that the Ritonavir-mediated up-regulation of the trypsin-like activity is not affected by specific active site inhibitors of the chymo-trypsin-like and PGPH activity. Moreover, we show that the mutual regulation of chymotrypsin-like and PGPH activities by their substrates as described previously by a "cyclical bite-chew" model is not affected by selective inhibitors of the respective active sites. These data challenge the bite-chew model and suggest that effectors of proteasome activity can act by binding to non-catalytic sites. Accordingly, we propose a kinetic "two-site modifier" model that assumes that the substrate (or effector) may bind to an active site as well as to a second non-catalytic modifier site. This model appears to be valid as it describes the complex kinetic effects of Ritonavir very well. Since Ritonavir partially inhibits major histocompatibility complex class I restricted antigen presentation, the postulated modifier site may be required to coordinate the active centers of the proteasome for the production of class I peptide ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号