首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary drug delivery systems rely on inhalation of drug-laden aerosols produced from aerosol generators such as inhalers, nebulizers etc. On deposition, the drug molecules diffuse in the mucus layer and are also subjected to mucociliary advection which transports the drugs away from the initial deposition site. The availability of the drug at a particular region of the lung is, thus, determined by a balance between these two phenomena. A mathematical analysis of drug deposition and retention in the lungs is developed through a coupled mathematical model of aerosol transport in air as well as drug molecule transport in the mucus layer. The mathematical model is solved computationally to identify suitable conditions for the transport of drug-laden aerosols to the deep lungs. This study identifies the conditions conducive for delivering drugs to the deep lungs which is crucial for achieving systemic drug delivery. The effect of different parameters on drug retention is also characterized for various regions of the lungs, which is important in determining the availability of the inhaled drugs at a target location. Our analysis confirms that drug delivery efficacy remains highest for aerosols in the size range of 1-5 μm. Moreover, it is observed that amount of drugs deposited in the deep lung increases by a factor of 2 when the breathing time period is doubled, with respect to normal breathing, suggesting breath control as a means to increase the efficacy of drug delivery to the deep lung. A higher efficacy also reduces the drug load required to be inhaled to produce the same health effects and hence, can help in minimizing the side effects of a drug.  相似文献   

2.
Abstract

Pulmonary lung targeting finds applications in drug delivery to the lung itself and to other body organs, via blood circulation following transfer across alveolar membranes. Understanding pulmonary drug delivery systems towards improving their efficacy needs identification of particle sizes of relevance and elucidation of links between suspension properties, techniques of atomisation and properties of the generated aerosols. This review article is focussed on understanding the elements of pulmonary drug delivery, specifically related to suspensions of small liposomes. Specific objectives of this review include (a) understanding aerosol particle deposition and absorption on pulmonary surface, (b) links between properties of aerosol generation and colloidal drug carriers used for drug encapsulation, and (c) investigation on the controlled properties of liposome aerosols generated using different atomisation techniques for efficacious aerosol therapy.  相似文献   

3.
Abstract

This overview will discuss our studies of liposomes aerosols to treat diseases of the lung and will entail (i) formulation and characterization of liposome aerosols, including dry liposome powder aerosols, (ii) modulation of the pharmacokinetic profile of liposomal drugs delivered by aerosol or intratracheal instillation, (iii) liposome-alveolar macrophage interactions in vitro and in vivo, and (iv) safety of liposome aerosols in vivo in mice, sheep and healthy human volunteers. Water-soluble agents can be retained in liposomes during aerosolization with air-pressure nebulizers within certain limitations of liposome composition, size, and operating conditions. Dry powder liposome aerosols have been formulated and deliver water-soluble encapsulated substances efficiently. Pharmacokinetic profiles of liposomal drugs delivered via intratracheal instillation exhibit typical slow release plasma profiles indicating that the carrier is the rate-limiting barrier for release. Accordingly, pulmonary mean residence times are significantly prolonged and systemic concentrations remain low. Liposomes do not inhibit the phagocytic activity of alveolar macrophages in vitro and in vivo, have no apparent histopathologic effects on lung architecture even after chronic administration, and do not alter dynamic compliance, lung resistance, paO2 and paCO2 in awake, unanesthetized sheep and in healthy human volunteers. In conclusion, liposomes are a promising innocuous aerosol delivery system for drugs to achieve prolonged localized drug concentrations in the lung or intracellular drug targeting to alveolar macrophages.  相似文献   

4.
The use and variety of drugs administered to children as inhaled aerosols is increasing, but little is known about how much drug reaches the lung and how it is distributed there in different age groups. In this article the reasons for measuring aerosol deposition in children are discussed and the potential methods for doing this described. Of the methods available, only the use of radiolabelled aerosols gives accurate information on total lung deposition and distribution. The potential risk of the radiation exposure required for these measurements varies with the age of the child but seems to be small. Properly designed studies are expected to clarify the factors affecting lung deposition in children and identify methods of inhalation associated with efficient and predictable delivery of the drug. Measurements of radioaerosol deposition may therefore be justified in children when this information is expected to lead to improvements in the effectiveness or safety of their treatment.  相似文献   

5.
One important research area of broad interest is the development of highly efficient drug delivery systems for desired site deposition and uptake. For example, controlled drug aerosol release and targeting to specific regions of the lung is a novel way to combat lung diseases, diabetes, virus infections, cancers, etc. Determination of feasible air-particle streams is a prerequisite for the development of such delivery devices, say, smart inhalers. The concept of "controlled particle release and targeting" is introduced and results are discussed for a representative model of bronchial lung airways afflicted with hemispherical tumors of different sizes and locations. It is shown that under normal particle inlet conditions a particle mass fraction of only up to 11% may deposit on the surface of a specific tumor with critical radius r/R approximately 1.25, while a controlled particle release achieves deposition fractions of 35 to 92% for a realistic combination of inlet Stokes and Reynolds numbers, depending mainly on tumor size. Furthermore, with the controlled release and targeting approach nearby healthy tissue is hardly impacted by the typically aggressive drug aerosols. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting micron-particles in sequentially bifurcating rigid airways, the results were obtained using a validated commercial finite-volume code with user-enhanced programs on a high-end engineering workstation. The new concept is generic and hence should be applicable to other regions of the respiratory system as well.  相似文献   

6.
This review presents an introduction to Raman scattering and describes the various Raman spectroscopy, Raman microscopy, and chemical imaging techniques that have demonstrated utility in biocolloidal self-assemblies, pharmaceutical drug delivery systems, and pulmonary research applications. Recent Raman applications to pharmaceutical aerosols in the context of pulmonary inhalation aerosol delivery are discussed. The "molecular fingerprint" insight that Raman applications provide includes molecular structure, drug-carrier/excipient interactions, intramolecular and intermolecular bonding, surface structure, surface and interfacial interactions, and the functional groups involved therein. The molecular, surface, and interfacial properties that Raman characterization can provide are particularly important in respirable pharmaceutical powders, as these particles possess a higher surface-area-to-volume ratio; hence, understanding the nature of these solid surfaces can enable their manipulation and tailoring for functionality at the nanometer level for targeted pulmonary delivery and deposition. Moreover, Raman mapping of aerosols at the micro- and nanometer level of resolution is achievable with new, sophisticated, commercially available Raman microspectroscopy techniques. This noninvasive, highly versatile analytical and imaging technique exhibits vast potential for in vitro and in vivo molecular investigations of pulmonary aerosol delivery, lung deposition, and pulmonary cellular drug uptake and disposition in unfixed living pulmonary cells.  相似文献   

7.
Aerosol gene therapy   总被引:9,自引:0,他引:9  
Gene therapy is a novel field of medicine that holds tremendous therapeutic potential for a variety of human diseases. Targeting of therapeutic gene delivery vectors to the lungs can be beneficial for treatment of various pulmonary diseases such as lung cancer, cystic fibrosis, pulmonary hypertension, alpha-1 antitrypsin deficiency, and asthma. Inhalation therapy using formulations delivered as aerosols targets the lungs through the pulmonary airways. The instant access and the high ratio of the drug deposited within the lungs noninvasively are the major advantages of aerosol delivery over other routes of administration. Delivery of gene formulations via aerosols is a relatively new field, which is less than a decade old. However, in this short period of time significant developments in aerosol delivery systems and vectors have resulted in major advances toward potential applications for various pulmonary diseases. This article will review these advances and the potential future applications of aerosol gene therapy technology.  相似文献   

8.
Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences.  相似文献   

9.
Dynamic aerosols of adenovirus 12 were generated in the same Henderson apparatus under conditions of high, medium, and low relative humidity. High relative humidities resulted in more recovery of adenovirus 12 from aerosols and lungs of newborn Syrian hamsters. At 89, 51, and 32% relative humidity, the total infectious virus recovered from a 20-min aerosol was 10(6.7), 10(6.0), and 10(4.3) TCD(50), respectively. Hamsters exposed to these 20-min aerosols retained measured lung doses of 10(3.0), 10(2.4), and 10(1.0) TCD(50), respectively. The measured retained lung doses were compared to calculated inhaled lung doses based on both total virus aerosolized and total virus recovery from the aerosols.  相似文献   

10.
Streptomycin and kanamycin levels in the blood and lung tissue after the antibiotic inhalation or intramuscular administration were studied comparatively on 86 healthy guinea pigs. The antibiotics were inhaled with the help of the nozzle or ultrasonic aerozol apparatus. The studies showed statistically reliable advantages of the ultrasonic aerosols in attaining high levels of streptomycin and kanamycin preserved for prolonged periods of time in the lungs of the experimental animals as compared to the intramuscular administration route or the aerosols introduced with the help of the pneumatic inhaler. After inhalation of the ultrasonic aerosols the levels of streptomycin in the lung tissue of the guinea pigs were 5 times higher than those after inhalation of the nozzle aerosols and 64 times higher than those after the antibiotic intramuscular administration. As for kanamycin the respective values were 2 and 14 times higher.  相似文献   

11.
The abilityto deliver proteins and peptides to the systemic circulation byinhalation has contributed to a rise in the number of inhalationtherapies under investigation. For most of these therapies, aerosolsare designed to comprise small spherical droplets or particles of massdensity near 1 g/cm3 and meangeometric diameter between ~1 and 3 µm, suitable for particlepenetration into the airways or lung periphery. Studies performedprimarily with liquid aerosols have shown that these characteristics ofinhaled aerosols lead to optimal therapeutic effect, both for local andsystemic therapeutic delivery. Inefficient drug delivery can stillarise, owing to excessive particle aggregation in an inhaler,deposition in the mouth and throat, and overly rapid particle removalfrom the lungs by mucocilliary or phagocytic clearance mechanisms. Toaddress these problems, particle surface chemistry and surfaceroughness are traditionally manipulated. Recent data indicate thatmajor improvements in aerosol particle performance may also be achievedby lowering particle mass density and increasing particle size, sincelarge, porous particles display less tendency to agglomerate than(conventional) small and nonporous particles. Also, large, porousparticles inhaled into the lungs can potentially release therapeuticsubstances for long periods of time by escaping phagocytic clearancefrom the lung periphery, thus enabling therapeutic action for periodsranging from hours to many days.

  相似文献   

12.
Hypertonic aerosol- and dry airflow-induced bronchoconstriction were examined in the canine lung periphery by the use of a wedged bronchoscope technique. Collateral resistance was measured in anesthetized dogs before and after exposure to isotonic and hypertonic aerosols and dry airflow. Hypertonic aerosols produced significantly greater responses than isotonic aerosols, and resistance increased in an exposure-dependent manner. Atropine attenuated responses to these challenges, indicating that aerosol-induced peripheral lung constriction was, in part, muscarinic in origin. Paired hypertonic- and dry airflow-induced constriction exhibited marked differences in magnitude and time course: responses to hypertonic aerosol peaked immediately; dry air-induced responses rose slowly to a maximum 5-min postchallenge. These differences may reflect differences in stimulus strength or differences in the regulatory pathways activated by each challenge. Despite this, a significant correlation exists between aerosol- and dry air-induced responses in the canine lung periphery and suggests that changes in airway fluid osmolality have an important role in the initiation of airflow-induced bronchoconstriction.  相似文献   

13.
Pharmaceutical inhalation aerosols have been playing a crucial role in the health and well being of millions of people throughout the world for many years. The technology's continual advancement, the ease of use and the more desirable pulmonary-rather-than-needle delivery for systemic drugs has increased the attraction for the pharmaceutical aerosol in recent years. But administration of drugs by the pulmonary route is technically challenging because oral deposition can be high, and variations in inhalation technique can affect the quantity of drug delivered to the lungs. Recent advances in nanotechnology, particularly drug delivery field have encouraged formulation scientists to expand their reach in solving tricky problems related to drug delivery. Moreover, application of nanotechnology to aerosol science has opened up a new category of pharmaceutical aerosols (collectively known as nanoenabled-aerosols) with added advantages and effectiveness. In this review, some of the latest approaches of nano-enabled aerosol drug delivery system (including nano-suspension, trojan particles, bioadhesive nanoparticles and smart particle aerosols) that can be employed successfully to overcome problems of conventional aerosol systems have been introduced.  相似文献   

14.
15.
Cardiopulmonary function of dogs with plutonium-induced chronic lung injury   总被引:1,自引:0,他引:1  
Beagle dogs had signs of restrictive lung disease 1 to 5 years after exposure by inhalation to 239PuO2 aerosols. The 239PuO2 aerosols were monodisperse with activity median aerodynamic diameters of 0.75, 1.5, or 3.0 microns. The plutonium particles produced protracted alpha irradiation of the lungs. Ten dogs had specific initial pulmonary burdens (IPB) of 330 to 4,100 kBq of 239PuO2/kg of body mass. The average onset time of clinical signs of lung injury was 3 years after exposure; the average time from the onset of signs until cardiorespiratory function evaluation was 5.5 years. A second group of 10 dogs had IPB of 110 to 2000 kBq of 239Pu/kg of body mass but no signs of lung injury. A third group of 10 dogs, not exposed to 239Pu, were matched for age and sex. Cardiopulmonary function tests were performed. Only the dogs in group I with signs of lung injury had a mild respiratory function disorder consisting of smaller lung volumes, reduced compliance, increased respiratory frequency and minute volume, and reduced carbon monoxide diffusing capacity. Cardiac function of all three groups was similar. These findings indicate that alpha irradiation of the lungs of man could produce restrictive lung disease at long times after initial exposure.  相似文献   

16.
We examined the effects of lung volume change and volume history on lung resistance (RL) and its components before and during induced constriction. Eleven subjects, including three current and four former asthmatics, were studied. RL, airway resistance (Raw), and, by subtraction, tissue viscance (Vtis) were measured at different lung volumes before and after a deep inhalation and were repeated after methacholine (MCh) aerosols up to maximal levels of constriction. Vtis, which average 9% of RL at base line, was unchanged by MCh and was not changed after deep inhalation but increased directly with lung volume. MCh aerosols induced constriction by increasing Raw, which was reversed by deep inhalation in inverse proportion to responsiveness. such that the more responsive subjects reversed less after a deep breath. Responsiveness correlated directly with the degree of maximal constriction, as more responsive subjects constricted to a greater degree. These results indicate that in humans Vtis comprises a small fraction of overall RL, which is clearly volume-dependent but unchanged by MCh-induced constriction and unrelated to the degree of responsiveness of the subject.  相似文献   

17.
Aerosol particle size influences airway drug deposition. Current inhaler devices are inefficient, delivering a heterodisperse distribution of drug particle sizes where, at best, 20% reaches the lungs. Monodisperse aerosols are the appropriate research tools to investigate basic aerosol science concepts within the human airways. We hypothesized that engineering such aerosols of albuterol would identify the ideal bronchodilator particle size, thereby optimizing inhaled therapeutic drug delivery. Eighteen stable mildly to moderately asthmatic patients [mean forced expiratory volume in 1 s (FEV1) 74.3% of predicted] participated in a randomized, double-blind, crossover study design. A spinning-top aerosol generator was used to produce monodisperse albuterol aerosols that were 1.5, 3, and 6 microm in size, and also a placebo, which were inhaled at cumulative doses of 10, 20, 40, and 100 microg. Lung function changes and tolerability effects were determined. The larger particles, 6 and 3 microm, were significantly more potent bronchodilators than the 1.5-microm and placebo aerosols for FEV1 and for the forced expiratory flow between exhalation of 25 and 75% of forced vital capacity. A 20-microg dose of the 6- and 3-microm aerosols produced FEV1 bronchodilation comparable to that produced by 200 microg from a metered-dose inhaler. No adverse effects were observed in heart rate and plasma potassium. The data suggest that in mildly to moderately asthmatic patients there is more than one optimal beta2-agonist bronchodilator particle size and that these are larger particles in the higher part of the respirable range. Aerosols delivered in monodisperse form can enable large reductions of the inhaled dose without loss of clinical efficacy.  相似文献   

18.

Background

The pulmonary residence time of inhaled glucocorticoids as well as their rate and extend of absorption into systemic circulation are important facets of their efficacy-safety profile. We evaluated a novel approach to elucidate the pulmonary absorption of an inhaled glucocorticoid. Our objective was to monitor and compare the combined process of drug particle dissolution, pro-drug activation and time course of initial distribution from human lung tissue into plasma for two different glucocorticoid formulations.

Methods

We chose beclomethasone dipropionate (BDP) delivered by two different commercially available HFA-propelled metered dose inhalers (Sanasthmax®/Becloforte™ and Ventolair®/Qvar™). Initially we developed a simple dialysis model to assess the transfer of BDP and its active metabolite from human lung homogenate into human plasma. In a novel experimental setting we then administered the aerosols into the bronchus of an extracorporally ventilated and reperfused human lung lobe and monitored the concentrations of BDP and its metabolites in the reperfusion fluid.

Results

Unexpectedly, we observed differences between the two aerosol formulations Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ in both the dialysis as well as in the human reperfusion model. The HFA-BDP formulated as Ventolair®/Qvar™ displayed a more rapid release from lung tissue compared to Sanasthmax®/Becloforte™. We succeeded to explain and illustrate the observed differences between the two aerosols with their unique particle topology and divergent dissolution behaviour in human bronchial fluid.

Conclusion

We conclude that though the ultrafine particles of Ventolair®/Qvar™ are beneficial for high lung deposition, they also yield a less desired more rapid systemic drug delivery. While the differences between Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ were obvious in both the dialysis and lung perfusion experiments, the latter allowed to record time courses of pro-drug activation and distribution that were more consistent with results of comparable clinical trials. Thus, the extracorporally reperfused and ventilated human lung is a highly valuable physiological model to explore the lung pharmacokinetics of inhaled drugs.  相似文献   

19.
《Biophysical journal》2022,121(9):1619-1631
Mechanistic insights into human respiratory tract (RT) infections from SARS-CoV-2 can inform public awareness as well as guide medical prevention and treatment for COVID-19 disease. Yet the complexity of the RT and the inability to access diverse regions pose fundamental roadblocks to evaluation of potential mechanisms for the onset and progression of infection (and transmission). We present a model that incorporates detailed RT anatomy and physiology, including airway geometry, physical dimensions, thicknesses of airway surface liquids (ASLs), and mucus layer transport by cilia. The model further incorporates SARS-CoV-2 diffusivity in ASLs and best-known data for epithelial cell infection probabilities, and, once infected, duration of eclipse and replication phases, and replication rate of infectious virions. We apply this baseline model in the absence of immune protection to explore immediate, short-term outcomes from novel SARS-CoV-2 depositions onto the air-ASL interface. For each RT location, we compute probability to clear versus infect; per infected cell, we compute dynamics of viral load and cell infection. Results reveal that nasal infections are highly likely within 1–2 days from minimal exposure, and alveolar pneumonia occurs only if infectious virions are deposited directly into alveolar ducts and sacs, not via retrograde propagation to the deep lung. Furthermore, to infect just 1% of the 140 m2 of alveolar surface area within 1 week, either 103 boluses each with 106 infectious virions or 106 aerosols with one infectious virion, all physically separated, must be directly deposited. These results strongly suggest that COVID-19 disease occurs in stages: a nasal/upper RT infection, followed by self-transmission of infection to the deep lung. Two mechanisms of self-transmission are persistent aspiration of infected nasal boluses that drain to the deep lung and repeated rupture of nasal aerosols from infected mucosal membranes by speaking, singing, or cheering that are partially inhaled, exhaled, and re-inhaled, to the deep lung.  相似文献   

20.
To develop a better understanding of the influence of cumulative radiation dose and dose rate to the lungs on the biological responses to inhaled radionuclides, several studies are in progress at this institute in which laboratory animals have been exposed once or repeatedly to aerosols of insoluble particles containing 144Ce or 239Pu. In the study reported here, F344 rats were exposed repeatedly to aerosols of 144CeO2 beginning at 94 days of age to reestablish desired lung burdens of 1.9, 9.2, 46, or 230 kBq of 144Ce every 60 days for 1 year (seven exposures). Other 94-day-old rats were exposed once to achieve similar desired initial lung burdens of 144Ce. Older rats were exposed once to achieve desired initial lung burdens of 46 or 230 kBq when 500 days of age, the age of the repeatedly exposed rats when exposed for the last time. Control rats were either unexposed, sham-exposed once or repeatedly, or exposed once or repeatedly to stable CeO2. Approximately equal numbers of male and female rats were used. The cumulative beta-radiation doses to the lungs, liver, and skeleton of rats exposed repeatedly were similar to those of rats with similar total lung burdens of 144Ce from a single inhalation exposure. The average beta-radiation dose rate to the lungs of the rats exposed repeatedly was about one-fifth of that in rats with similar total lung burdens after a single exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号