首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evaluation of uncertainty in quantitative real-time PCR   总被引:4,自引:0,他引:4  
Quantitative real-time PCR is one of the newer methods for measurement of the amount of nucleic material in biological systems. However, reliable measurement requires an appropriate estimation of uncertainty and this paper has developed the uncertainty budget associated with this procedure using as an example, data from a quantitative real-time PCR method for the enumeration of Campylobacter jejuni. This uncertainty is relatively large and for instance, a measured result of 151 units of DNA would have a 95% confidence interval of +/-84 units of DNA with the main sources of uncertainty being the measurement of the threshold cycle (Ct) value, the predicted DNA content of the unknown sample from the calibration line and the molar absorbance value for DNA.  相似文献   

2.
3.
4.
5.
6.
ABSTRACT: BACKGROUND: The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR) is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. RESULTS: The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25) remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1a, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4) were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-[increment][increment]CT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-[increment][increment]CT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13) as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such experiments. CONCLUSIONS: We recommend the use of RDN5.8, UBC13, and PGK1 alone or the combination of RDN5.8 plus UBC13 or PGK1 as reference genes for RT-qPCR analysis of gene expression in C. glabrata following azole treatment. In contrast, we show that ACT1 and other commonly used reference genes (GAPDH, PPIA, RPL13A, TUB1, etc.) were not validated as good internal controls in the current model.  相似文献   

7.
The Asian longhorned tick, Haemaphysalis longicornis, the dominant species of Ixodidae in Korea, has a wide distribution in East Asia, far-East Russia, and Western Pacific countries, and has recently been discovered in the Eastern states of the United States of America. H. longicornis transmits various pathogens, including Babesia ovate, Rickettsia japonica, and severe fever with thrombocytopenia syndrome virus (SFTSV). Considering its medical importance, in order to understand the physiology of H. longicornis, it is crucial to determine the expression of the genes of interest. Although quantitative real-time PCR (qRT-PCR) has been widely used to analyze gene expression, stably-expressed internal reference genes across samples of different conditions should be selected for the accurate normalization of target gene expression levels. Therefore, in this study, we investigated the expression levels of five candidate reference genes, namely ACT, RPP0, RPL23, TUB, and GAPDH, in H. longicornis under different conditions, including different collection months, developmental stages, and SFTSV infection status. Using four software programs, namely, NormFinder, BestKeeper, geNorm, and RefFinder, their expression stabilities were evaluated. Subsequently, a single gene between RPL23 and RPP0 was validated, which was found to be most stable reference gene after comparing the expression levels of HSP70 determined using different normalization methods.  相似文献   

8.
Quantitative real-time polymerase chain reaction (qRT-PCR) has been extensively used in several plant species as an accurate technique for gene expression analysis. However, the expression level of a target gene may be misconstrued due to unstable expression of the reference genes under different experimental conditions. Therefore, it is necessary to systematically evaluate these reference genes before experiments are conducted. Recently, more and more studies have focused on gene expression in pepper (Capsicum annuum L.). In this study, ten putative reference genes were chosen to identify expression stability by using geNorm and NormFinder statistical algorithms in ten different pepper sample pools, including those from different plant tissues (root, stem, leaf and flower) and from plants treated with hormones (salicylic acid and gibberellic acid) and abiotic stresses (cold, heat, salt and drought). EF1?? and UEP exhibited the most stable expression across all of the tested pepper samples. For abiotic stress or different hormone treatment, the ranking of candidate reference genes was not completely consistent, except for EF1?? which showed a relatively stable expression level. For different tissues, the expression of Actin1 was stable and it was considered an appropriate reference gene. It is concluded that EF1??, UEP and Actin1 are suitable reference genes for reliable qRT-PCR data normalization for the tissues and experimental conditions used in this experiment.  相似文献   

9.
10.
11.
Marine experimental stem cell transplantations require the accurate discrimination and quantification of donor cells from host cells. A Y-chromosome-specific, quantitative real-time PCR (kinetic PCR) protocol for blood-derived DNA was developed. The assay sensitivity was extremely high with accurate detection of only 10 pg (six copies of Y target DNA) in a variable background of female DNA background ranging from 2.5 to 50 ng. The dynamic range of the assay provided accurate results ranging from 2.2 x 10(-2)% to 100% of male DNA in female background. The kinetic PCR assay can be used in all mouse strains, and a sample size as low as 2.5 ng total DNA is sufficient for analysis. Therefore, kinetic PCR allows engraftment kinetic studies on repeated blood draws of individual animals with no need for sacrifice. Compared to conventional PCR, the assay is much simplified, as neither the accurate adjustment of sample DNA concentration nor a post-reaction analysis procedure is required. The procedure is simple, free of radioactivity, and permits a throughput of 500-600 reactions per day.  相似文献   

12.
13.
Cyclospora cayetanensis, a coccidian parasite, with a fecal-oral life cycle, has become recognized worldwide as an emerging human pathogen. Clinical manifestations include prolonged gastroenteritis. While most cases of infection with C. cayetanensis in the United States have been associated with foodborne transmission, waterborne transmission has also been implicated. We report on the development and application of a real-time, quantitative polymerase chain reaction assay for the detection of C. cayetanensis oocysts, which is the first reported use of this technique for this organism. Both a species-specific primer set and dual fluorescent-labeled C. cayetanensis hybridization probe were designed using the inherent genetic uniqueness of the 18S ribosomal gene sequence of C. cayetanensis. The real-time polymerase chain reaction assay has been optimized to specifically detect the DNA from as few as 1 oocyst of C. cayetanensis per 5 microl reaction volume.  相似文献   

14.
Copy number changes are known to be involved in numerous human genetic disorders. In this context, qPCR-based copy number screening may serve as the method of choice for targeted screening of the relevant disease genes and their surrounding regulatory landscapes. qPCR has many advantages over alternative methods, such as its low consumable and instrumentation costs, fast turnaround and assay development time, high sensitivity and open format (independent of a single supplier). In this chapter we provide all relevant information for a successfully implement of qPCR-based copy number analysis. We emphasize the significance of thorough in silico and empirical validation of the primers, the need for a well thought-out experiment design, and the importance of quality controls along the entire workflow. Furthermore, we suggest an appropriate and practical way to calculate copy numbers and to objectively interpret the results.The provided guidelines will most certainly improve the quality and reliability of your qPCR-based copy number screening.  相似文献   

15.

Background  

There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay.  相似文献   

16.
Three comparatively rapid methods for the extraction of DNA from fungal conidia and yeast cells in environmental (air, water and dust) samples were evaluated for use in real-time PCR (TaqMan™) analyses. A simple bead milling method was developed to provide sensitive, accurate and precise quantification of target organisms in air and water (tap and surface) samples. However, quantitative analysis of dust samples required further purification of the extracted DNA by a streamlined silica adsorption procedure.  相似文献   

17.
18.
Accurate and timely detection of transgene copy number in sugarcane is currently hampered by the requirement to use Southern blotting, needing relatively large amounts of genomic DNA and, therefore, the continued growth and maintenance of bulky plants in containment glasshouses. In addition, the sugarcane genome is both polyploid and aneuploid, complicating the identification of appropriate genes for use as references in the development of a high-throughput method. Using bioinformatic techniques followed by in vitro testing, two genes that appear to occur once per base genome of sugarcane were identified. Using these genes as reference genes, a high-throughput assay employing RT-qPCR was developed and tested using a group of sugarcane plants that contained unknown numbers of copies of the nptII gene encoding kanamycin resistance. Using this assay, transgene copy numbers from 3 to more than 50 were identified. In comparison, Southern blotting accurately identified the number of transgene copies for one line and by inference for another, but was not able to provide an accurate estimation for transgenic lines containing numerous copies of the nptII gene. Using the reference genes identified in this study, a high-throughput assay for the determination of transgene copy number was developed and tested for sugarcane. This method requires much less input DNA, can be performed much earlier in the production of transgenic sugarcane plants and allows much more efficient assessment of numerous potentially transgenic lines than Southern blotting.  相似文献   

19.
实时定量PCR技术的介绍   总被引:61,自引:0,他引:61  
张立国  张琚 《生物技术》2003,13(2):39-40
实时定量PCR(real-timePCR)技术是近几年发展起来的新技术 ,既保持了PCR技术灵敏、快速的特点 ,又克服了以往PCR技术中存在的假阳性污染和不能进行准确定量的缺点。另外 ,还有重复性好、省力、低费用等优点。实时定量PCR技术是从传统PCR技术发展而来 ,其基本原理是相同的 ,主要不同之处是其定量的体系。下面简单介绍一下该技术定量的原理。1 荧光染料的应用荧光染料的应用是实时PCR技术能够进行定量检测的一个重要部分 ,在PCR反应体系中应用荧光标记物 ,通过监测荧光信号的累积实现对整个PCR循环进程的观察。目前主要有四种方法…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号