首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, it has become clear that there is an extensive cross-talk between the nervous and the immune system. Somewhat surprisingly, the immune cells themselves do express components of the neuronal neurotransmitters systems. What role the neurotransmitters, their ion channels, receptors and transporters have in immune function and regulation is an emerging field of study. Several recent studies have shown that the immune system is capable of synthesizing and releasing the classical neurotransmitter GABA (γ-aminobutyric acid). GABA has a number of effects on the immune cells such as activation or suppression of cytokine secretion, modification of cell proliferation and GABA can even affect migration of the cells. The immune cells encounter GABA when released by the immune cells themselves or when the immune cells enter the brain. In addition, GABA can also be found in tissues like the lymph nodes, the islets of Langerhans and GABA is in high enough concentration in blood to activate, e.g., GABA-A channels. GABA appears to have a role in autoimmune diseases like multiple sclerosis, type 1 diabetes, and rheumatoid arthritis and may modulate the immune response to infections. In the near future, it will be important to work out what specific effects GABA has on the function of the different types of immune cells and determine the underlying mechanisms. In this review, we discuss some of the recent findings revealing the role of GABA as an immunomodulator.  相似文献   

2.
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.  相似文献   

3.
Immunoenhancing effects of alprazolam in mice   总被引:1,自引:0,他引:1  
E Fride  P Skolnick  P K Arora 《Life sciences》1990,47(26):2409-2420
The GABA/benzodiazepine receptor chloride channel complex has been proposed to play a modulatory role in immune function. The effects of alprazolam, a triazolobenzodiazepine with high affinity for "central" benzodiazepine receptors, were examined on several parameters of immune function in mice. Natural killer cell activity, mixed leukocyte reactivity and mitogen-induced lymphocyte proliferation were all significantly increased two hr after administration of low doses (0.02-1.0 mg/kg) of alprazolam. Twenty four hr later, similar but less robust immunoenhancing effects were observed. Higher doses of alprazolam (5-10 mg/kg) did not affect these measures of immune function. The immunoenhancing effects of alprazolam did not appear related to corticosterone levels. In contrast, vehicle injection caused a profound suppression of these immune parameters two hr later, which was no longer apparent 24 hr later. This immunosuppression appeared to correlate with a concurrent rise in serum corticosterone levels. These data support the hypothesis that the GABA/benzodiazepine receptor chloride channel complex modulates immune function. Use of low doses of alprazolam may be of potential clinical importance when immunoenhancement is required.  相似文献   

4.
Gamma-aminobutyric acid (GABA) is both a major inhibitory neurotransmitter in the CNS and a product of beta cells of the peripheral islets. Our previous studies, and those of others, have shown that T cells express functional GABAA receptors. However, their subunit composition and physiological relevance are unknown. In this study, we show that a subset of GABAA receptor subunits are expressed by CD4+ T cells, including the delta subunit that confers high affinity for GABA and sensitivity to alcohol. GABA at relatively low concentrations down-regulated effector T cell responses to beta cell Ags ex vivo, and administration of GABA retarded the adoptive transfer of type 1 diabetes (T1D) in NOD/scid mice. Furthermore, treatment with low dose of GABA (600 microg daily) dramatically inhibited the development of proinflammatory T cell responses and disease progression in T1D-prone NOD mice that already had established autoimmunity. Finally, GABA inhibited TCR-mediated T cell cycle progression in vitro, which may underlie GABA's therapeutic effects. The immunoinhibitory effects of GABA on T cells may contribute to the long prodomal period preceding the development of T1D, the immunological privilege of the CNS, and the regulatory effects of alcohol on immune responses. Potentially, pharmacological modulation of GABAA receptors on T cells may provide a new class of therapies for human T1D as well as other inflammatory diseases.  相似文献   

5.
Tian J  Dang H  Kaufman DL 《PloS one》2011,6(9):e25337
Antigen-based therapies (ABTs) very effectively prevent the development of type 1 diabetes (T1D) when given to young nonobese diabetic (NOD) mice, however, they have little or no ability to reverse hyperglycemia in newly diabetic NOD mice. More importantly, ABTs have not yet demonstrated an ability to effectively preserve residual ?-cells in individuals newly diagnosed with type 1 diabetes (T1D). Accordingly, there is great interest in identifying new treatments that can be combined with ABTs to safely protect ?-cells in diabetic animals. The activation of γ-aminobutyric acid (GABA) receptors (GABA-Rs) on immune cells has been shown to prevent T1D, experimental autoimmune encephalomyelitis (EAE) and rheumatoid arthritis in mouse models. Based on GABA's ability to inhibit different autoimmune diseases and its safety profile, we tested whether the combination of ABT with GABA treatment could prolong the survival of transplanted ?-cells in newly diabetic NOD mice. Newly diabetic NOD mice were untreated, or given GAD/alum (20 or 100 μg) and placed on plain drinking water, or water containing GABA (2 or 6 mg/ml). Twenty-eight days later, they received syngenic pancreas grafts and were monitored for the recurrence of hyperglycemia. Hyperglycemia reoccurred in the recipients given plain water, GAD monotherapy, GABA monotherapy, GAD (20 μg)+GABA (2 mg/ml), GAD (20 μg)+GABA (6 mg/ml) and GAD (100 μg)+GABA (6 mg/ml) about 1, 2-3, 3, 2-3, 3-8 and 10-11 weeks post-transplantation, respectively. Thus, combined GABA and ABT treatment had a synergistic effect in a dose-dependent fashion. These findings suggest that co-treatment with GABA (or other GABA-R agonists) may provide a new strategy to safely enhance the efficacy of other therapeutics designed to prevent or reverse T1D, as well as other T cell-mediated autoimmune diseases.  相似文献   

6.
γ-aminobutyric acid or GABA is an amino acid that functionally acts as a neurotransmitter and is critical to neurotransmission. GABA is also a metabolite in the Krebs cycle. It is therefore unsurprising that GABA and its receptors are also present outside of the central nervous system, including in immune cells. This observation suggests that GABAergic signaling impacts events beyond brain function and possibly human health beyond neurological disorders. Indeed, GABA receptor subunits are expressed in pathological disease states, including in disparate cancers. The role that GABA and its receptors may play in cancer development and progression remains unclear. If, however, those cancers have functional GABA receptors that participate in GABAergic signaling, it raises an important question whether these signaling pathways might be targetable for therapeutic benefit. Herein we summarize the effects of modulating Type-A GABA receptor signaling in various cancers and highlight how Type-A GABA receptors could emerge as a novel therapeutic target in cancer.  相似文献   

7.
在帕金森病(Parkinson' s disease,PD)等神经退行性疾病中,小胶质细胞的过度激活引发的炎症与神经元进行性丢失密切相关。中枢神经系统中主要的抑制性神经递质γ-氨基丁酸(GABA),近来被发现在免疫系统中,可发挥抑炎作用,但其具体机制尚不明确。本文利用脂多糖(LPS)刺激的BV2细胞,取其培养基培养SH-SY5Y细胞,检测炎症因子及神经细胞的损伤作用。结果显示,在BV2细胞中,与无处理组相比,LPS以剂量依赖的方式促进炎症因子的释放(P<0.01)。同时,细胞活力和细胞毒性的结果也表明,释放的炎症因子会诱导SH-SY5Y细胞活力衰退;进一步使用GABA及GABAA受体激动剂蝇蕈醇(Muscimol)进行干预处理,检测其抑炎作用。酶联免疫吸附测定(ELISA)的结果表明,与LPS组相比,GABA,GABAAR激动剂Muscimol预处理都以剂量依赖方式抑制LPS诱导的炎症因子释放(P<0.05)。细胞活力和细胞毒性的结果也表明,GABA,GABAAR激动剂Muscimol的预处理挽救了炎症因子造成的SH-SY5Y细胞活力衰退(P <0.05)。另外,通过免疫荧光分析以及双荧光素酶的检测表明,Muscimol可以抑制NF-κB的入核和相关炎症因子的转录(P<0.0001,P<0.01)。总之,本文的结果提示,GABA可能通过抑制BV2小胶质细胞分泌的炎症因子的方式发挥神经保护作用,而GABA的这种作用主要是依赖于GABAA受体-NF-κB通路。本研究结果为进一步探究GABA抗炎的分子机制,以及研发中枢系统抗炎药物提供科学依据。  相似文献   

8.
Antigen-based therapies (ABTs) very effectively prevent the development of type 1 diabetes (T1D) when given to young nonobese diabetic (NOD) mice, however, they have little or no ability to reverse hyperglycemia in newly diabetic NOD mice. More importantly, ABTs have not yet demonstrated an ability to effectively preserve residual ß-cells in individuals newly diagnosed with type 1 diabetes (T1D). Accordingly, there is great interest in identifying new treatments that can be combined with ABTs to safely protect ß-cells in diabetic animals. The activation of γ-aminobutyric acid (GABA) receptors (GABA-Rs) on immune cells has been shown to prevent T1D, experimental autoimmune encephalomyelitis (EAE) and rheumatoid arthritis in mouse models. Based on GABA''s ability to inhibit different autoimmune diseases and its safety profile, we tested whether the combination of ABT with GABA treatment could prolong the survival of transplanted ß-cells in newly diabetic NOD mice. Newly diabetic NOD mice were untreated, or given GAD/alum (20 or 100 µg) and placed on plain drinking water, or water containing GABA (2 or 6 mg/ml). Twenty-eight days later, they received syngenic pancreas grafts and were monitored for the recurrence of hyperglycemia. Hyperglycemia reoccurred in the recipients given plain water, GAD monotherapy, GABA monotherapy, GAD (20 µg)+GABA (2 mg/ml), GAD (20 µg)+GABA (6 mg/ml) and GAD (100 µg)+GABA (6 mg/ml) about 1, 2-3, 3, 2-3, 3-8 and 10-11 weeks post-transplantation, respectively. Thus, combined GABA and ABT treatment had a synergistic effect in a dose-dependent fashion. These findings suggest that co-treatment with GABA (or other GABA-R agonists) may provide a new strategy to safely enhance the efficacy of other therapeutics designed to prevent or reverse T1D, as well as other T cell-mediated autoimmune diseases.  相似文献   

9.
γ-Acetylenic GABA (4-amino-hex-5-ynoic acid) is an irreversible inhibitor of glutamate decarboxylase (GAD;E.C. 4.1.1.15). Partially purified GAD labelled by [2-3H]-γ-acetylenic GABA was analyzed by line-immunoelectrophoresis using a polyvalent sheep-anti-GAD antiserum. One of the three antigen-antibody precipitin lines found contained radioactivity. Two-dimensional electrophoresis of the labelled partially purified CAD revealed two radioactive bands of molecular weights 54,000 ± 1,500 and 58,000 ± 1,500 and identical pI of 5.3 to 5.6 (9M urea). Reaction of [2-3H]-γ-acetylenic GABA with an enzymatically active GAD anti-GAD immune complex and isolation of this complex yielded the same two bands. The use of the labelled suicide substrate permits localization of GAD in analytical electrophoretic techniques.  相似文献   

10.
Using the method of the double immune label combined with two antibodies, i.e., monoclonal antibodies to gamma-aminobutyric acid (GABA) and polyclonal antibodies to glycine, the distribution of gamma-aminobutyric acid- and glycine-immunoreactive synapses on motoneurons and primary afferent axons was studied in the frog Rana temporaria spinal cord. An analysis of all labeled boutons on the dendrites and soma of motoneurons showed the existence of three categories of immunoreactive synapses as follows: 7% were labeled for GABA, 23% were labeled for glycine, and approximately 70% were immunoreactive to both GABA and glycine. These results confirm the predominant role of glycine in the postsynaptic inhibition of motoneuronal activity. Three similar populations of synaptic boutons were also founded on primary afferent axons, including one GABA-immunoreactive (25%) and one glycine-immunoreactive (5%); the majority of the immunoreactive synapses had the colocalization of two inhibitory transmitters. As a rule, the higher proportion of axo-axonal synapses was organized in synaptic triads. The possible simultaneous roles of glycine as a transmitter of postsynaptic inhibition and as a transmitter that mediates the process of the autoreception of glutamate in the axo-axonal synapses on the primary afferent fibers are discussed.  相似文献   

11.
Cerebellar granule neurons can be conveniently kept in culture. They constitute a useful model to study regulation of glutamatergic activity, in particular the inhibitory action of GABA (7-aminobutyrate). GABA exerts an inhibitory action on evoked transmitter release acting on both GABA(A) and GABA(B) receptors. The functional properties of these receptors are dependent upon the environment of the neurons during early development in culture as the expression of both receptor subtypes is enhanced by exposure of the neurons to GABA(A) receptor agonists. Thus, the inducible GABA(A) receptors are of low affinity and lack benzodiazepine sensitivity, and the G-protein coupling differs among the native and the inducible GABA(B) receptors. Moreover, the GABA(A) and the GABA(B) receptors are functionally coupled, leading to a disinhibitory action of GABA. Therefore drugs exhibiting selective agonist or antagonist action on subclasses of GABA(A) and GABA(B) may be of potential use as regulators of glutamatergic excitatory activity.  相似文献   

12.
Scanziani M 《Neuron》2000,25(3):673-681
In the hippocampus, interneurons provide synaptic inhibition via the transmitter GABA, which can activate GABA(A) and GABA(B) receptors (GABA(A)Rs and GABA(B)Rs). Generally, however, GABA released by a single interneuron activates only GABA(A)Rs on its targets, despite the abundance of GABA(B)RS. Here, I show that during hippocampal rhythmic activity, simultaneous release of GABA from several interneurons activates postsynaptic GABA(B)Rs and that block of GABA(B)Rs increases oscillation frequency. Furthermore, if GABA uptake is inhibited, even GABA released by a single interneuron is enough to activate GABA(B)Rs. This occurs also on cells not directly contacted by that interneuron, indicating that GABA has to overcome uptake and exit the synaptic cleft to reach GABA(B)RS. Thus, activation of extrasynaptic GABA(B)Rs by pooling of GABA is an important mechanism regulating hippocampal network activity.  相似文献   

13.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)/GABA(C)) and metabotropic (GABA(B)) receptors (R). In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in nonneuronal cells in peripheral tissue. Although the GABA(B)R has been shown to function as a prejunctional inhibitory receptor on parasympathetic nerves in the lung, the expression and functional coupling of GABA(B) receptors to G(i) in airway smooth muscle itself have never been described. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway smooth muscle and from RNA isolated from cultured human airway smooth muscle (HASM) cells. Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in human native and cultured airway smooth muscle. The GABA(B)R1 protein was immunohistochemically localized to airway smooth muscle in guinea pig tracheal rings. Baclofen, a GABA(B)R agonist, elicited a concentration-dependent stimulation of [(35)S]GTPgammaS binding in HASM homogenates that was abrogated by the GABA(B)R antagonist CGP-35348. Baclofen also inhibited adenylyl cyclase activity and induced ERK phosphorylation in HASM. Another GABA(B)R agonist, SKF-97541, mimicked while pertussis toxin blocked baclofen's effect on ERK phosphorylation, implicating G(i) protein coupling. Functional GABA(B) receptors are expressed in HASM. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to the G(i) protein in airway smooth muscle.  相似文献   

14.
During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC) may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA) receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III), DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABAA receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABAA receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens.  相似文献   

15.
Evidence from electrophysiological studies suggests that 5-HT neuronal firing in the dorsal raphe nucleus (DRN) may be regulated by both GABA(A) and GABA(B) receptors. Here, we addressed the question of whether the activity of individual 5-HT neurons is regulated by both GABA(A) and GABA(B) receptors. In addition, we examined the concentration-response relationships of GABA(A) and GABA(B) receptor activation and determined if GABA receptor regulation of 5-HT neuronal firing is altered by moderate alterations in circulating corticosterone. The activity of 5-HT neurons in the DRN of the rat was examined using in vitro extracellular electrophysiology. The firing of all individual neurons tested was inhibited by both the GABA(A) receptor agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]-pyridin-3-ol hydrochloride (THIP) (25 microM) and the GABA(B) receptor agonist baclofen (1 microM). Responses to THIP (5, 10, 25 microM) and baclofen (1, 3, 10 microM) were concentration dependent and attenuated by the GABA(A) and GABA(B) receptor antagonists, bicuculline (50 microM) and phaclofen (200 microM), respectively. To examine the effects of corticosterone on the sensitivity of 5-HT neurons to GABA receptor activation, experiments were conducted on adrenalectomized animals with corticosterone maintained for two weeks at either a low or moderate level within the normal diurnal range. These changes in corticosterone levels had no significant effects on the 5-HT neuronal response to either GABA(A) or GABA(B) receptor activation. The data indicate that the control of 5-HT neuronal activity by GABA is mediated by both GABA(A) and GABA(B) receptors and that this control is insensitive to moderate changes in circulating glucocorticoid levels.  相似文献   

16.
Recent advances in GABA research.   总被引:9,自引:0,他引:9  
In this article I throw attention on to this GABA issue by outlining several aspects of current interest in the field of GABA research. The theme was selected in association with the Pharmacology and Therapeutical Potential of the GABA System symposium of the Second European Congress of Pharmacology held in July 1999 in Budapest, Hungary. A wide range of topics relating to the GABA system were outlined, including new members of the GABAA receptor gene family, subunit composition of native GABA(A) receptors, surface expression and clustering of GABA(A) receptor subunits, allosteric modulation of GABA(A) receptors, localization of agonist binding sites, GABA release, GABA(A)-GABA(B) receptor crosstalk, GABA(A) and GABA(B) receptor functions in different brain areas, altered transport and GABA(A) receptor pattern in different models of epilepsy.  相似文献   

17.
Thyroid hormones (THs) have critical roles in brain development and normal brain function in vertebrates. Clinical evidence suggests that some human nervous disorders involving GABA(gamma-aminobutyric acid)-ergic systems are related to thyroid dysfunction (i.e. hyperthyroidism or hypothyroidism). There is experimental evidence from in vivo and in vitro studies on rats and mice indicating that THs have effects on multiple components of the GABA system. These include effects on enzyme activities responsible for synthesis and degradation of GABA, levels of glutamate and GABA, GABA release and reuptake, and GABA(A) receptor expression and function. In developing brain, hypothyroidism generally decreases enzyme activities and GABA levels whereas in adult brain, hypothyroidism generally increases enzyme activities and GABA levels. Hyperthyroidism does not always have the opposite effect. In vitro studies on adult brain have shown that THs enhance GABA release and inhibit GABA-reuptake by rapid, extranuclear actions, suggesting that presence of THs in the synapse could prolong the action of GABA after release. There are conflicting results on effects of long term changes in TH levels on GABA reuptake. Increasing and decreasing circulating TH levels experimentally in vivo alter density of GABA(A) receptor-binding sites for GABA and benzodiazepines in brain, but results vary from study to study, which may reflect important regional differences in the brain. There is substantial evidence that THs also have an extranuclear effect to inhibit GABA-stimulated Cl(-) currents by a non-competitive mechanism in vitro. The thyroid gland exhibits GABA transport mechanisms as well as enzyme activities for GABA synthesis and degradation, all of which are sensitive to thyroidal state. In rats and humans, GABA inhibits thyroid stimulating hormone (TSH) release from the pituitary, possibly by action directly on the pituitary or on hypothalamic thyrotropin-releasing hormone neurons. In mice, GABA inhibits TSH-stimulated TH release from the thyroid gland. Taken together, these studies provide strong support for the hypothesis that there is reciprocal regulation of the thyroid and GABA systems in vertebrates.  相似文献   

18.
In mammalian peripheral sympathetic ganglia GABA acts presynaptically to facilitate cholinergic transmission and postsynaptically to depolarize membrane potential. The GABA effect on parasympathetic pancreatic ganglia is unknown. We aimed to determine the effect of locally applied GABA on cat pancreatic ganglion neurons. Ganglia with attached nerve trunks were isolated from cat pancreata. Conventional intracellular recording techniques were used to record electrical responses from ganglion neurons. GABA pressure microejection depolarized membrane potential with an amplitude of 17.4 +/- 0.7 mV. Electrically evoked fast excitatory postsynaptic potentials were significantly inhibited (5.4 +/- 0.3 to 2.9 +/- 0.2 mV) after GABA application. GABA-evoked depolarizations were mimicked by the GABA(A) receptor agonist muscimol and abolished by the GABA(A) receptor antagonist bicuculline and the Cl(-) channel blocker picrotoxin. GABA was taken up and stored in ganglia during preincubation with 1 mM GABA; beta-aminobutyric acid application after GABA loading significantly (P < 0.05) increased depolarizing response to GABA (15.6 +/- 1.0 vs. 7.8 +/- 0.8 mV without GABA preincubation). Immunolabeling with antibodies to GABA, glial cell fibrillary acidic protein, protein gene product 9.5, and glutamic acid decarboxylase (GAD) immunoreactivity showed that GABA was present in glial cells, but not in neurons, and that glial cells did not contain GAD, whereas islet cells did. The data suggest that endogenous GABA released from ganglionic glial cells acts on pancreatic ganglion neurons through GABA(A) receptors.  相似文献   

19.
GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. GABA(B) receptors are promising drug targets for a wide spectrum of psychiatric and neurological disorders. Receptor subtypes exhibit no pharmacological differences and are based on the subunit isoforms GABA(B1a) and GABA(B1b). GABA(B1a) differs from GABA(B1b) in its ectodomain by the presence of a pair of conserved protein binding motifs, the sushi domains (SDs). Previous work showed that selectively GABA(B1a) contributes to heteroreceptors at glutamatergic terminals, whereas both GABA(B1a) and GABA(B1b) contribute to autoreceptors at GABAergic terminals or to postsynaptic receptors. Here, we describe GABA(B1j), a secreted GABA(B1) isoform comprising the two SDs. We show that the two SDs, when expressed as a soluble protein, bind to neuronal membranes with low nanomolar affinity. Soluble SD protein, when added at nanomolar concentrations to dissociated hippocampal neurons or to acute hippocampal slices, impairs the inhibitory effect of GABA(B) heteroreceptors on evoked and spontaneous glutamate release. In contrast, soluble SD protein neither impairs the activity of GABA(B) autoreceptors nor impairs the activity of postsynaptic GABA(B) receptors. We propose that soluble SD protein scavenges an extracellular binding partner that retains GABA(B1a)-containing heteroreceptors in proximity of the presynaptic release machinery. Soluble GABA(B1) isoforms like GABA(B1j) may therefore act as dominant-negative inhibitors of heteroreceptors and control the level of GABA(B)-mediated inhibition at glutamatergic terminals. Of importance for drug discovery, our data also demonstrate that it is possible to selectively impair GABA(B) heteroreceptors by targeting their SDs.  相似文献   

20.
Gamma-aminobutyric acid (GABA) participates in neuroendocrine regulation. Since steroid hormones have been shown to modulate the GABAergic system, here we evaluated the effect of chronic in vivo estradiol administration on GABA B receptor (GABA(B)R) expression. GABA(B1) and GABA(B2) subunits were analyzed by Western Blot and RT-PCR, in hypothalami and anterior pituitaries of adult female rats: a) treated for 1 week with estradiol-valerate (a single dose of 100 mug /kg: E1), b) implanted with a 10 mg pellet of estradiol-benzoate for 5 weeks (E5) or c) on proestrous (P), d) ovariectomized (OVX). Pituitary GABA(B)R levels were correlated to a biological effect: baclofen, a GABA(B)R agonist, action on intracellular calcium titers ([Ca(2+)](i)) in pituitary cells. E5 pituitaries showed a significant decrease in the expression of GABA(B1) and GABA(B2) mRNAs compared to P. The GABA(B1a) splice variant of GABA(B1) was always more abundant than GABA(B1b) in this tissue. Similar to the pituitary, hypothalamic GABA(B1) and GABA(B2) mRNAs decreased in E5; this was confirmed at the protein level. In the hypothalamus GABA(B1b) was the main variant expressed in P rats, and was the one significantly sensitive to estradiol-induced decrease, as determined by Western Blots. Castration did not modify GABA(B)R expression with regards to P in either tissue. In P pituitary cells baclofen induced a decrease in [Ca(2+)](i), in contrast this effect was lost in E5 cells. We conclude that chronic estradiol treatment negatively regulates the expression of the GABA(B)R subunits in the pituitary and the hypothalamus. This effect is coupled to a loss of baclofen action on intracellular calcium in pituitary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号