首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

2.
嗜酸氧化亚铁硫杆菌生长动力学方程的应用   总被引:1,自引:1,他引:0  
基于Monod模型推导出了A.f的生长动力学方程模型,采用Gauss-Newton算法确定了在不同初始条件下细菌生长的动力学参数,即最大比生长速率‰、Monod常数K及R0。通过在不同初始条件下细菌生长特性的研究,得到了相应初始生长条件下以限制性底物亚铁离子浓度为表征的生长动力学方程,理论上揭示了动力学参数变化对细菌生长的影响规律,其中生长动力学方程的数值模拟与实验数据相吻合。  相似文献   

3.
Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The kinetics of the bioleaching of ZnS concentrate by Thiobacillus ferrooxidans was studied in a well-mixed batch reactor. Experimental studies were made at 30 degrees C and pH 2.2 on adsorption of the bacteria to the mineral, ferric iron leaching, and bacterial leaching. The adsorption rate of the bacteria was fairly rapid in comparison with the bioleaching rate, indicating that the bacterial adsorption is at equilibrium during the leaching process. The adsorption equilibrium data were correlated by the Langmuir isotherm, which is a useful means for predicting the number of bacteria adsorbed on the mineral surface. The rate of chemical leaching varied with the concentration of ferric iron, and the first-order reaction rate constant was determined. Bioleaching in an iron-containing medium was found to take place by both direct bacterial attack on the sulfide mineral and indirect attack via ferric iron. In this case, the ferric iron was formed from the reaction product (ferrous iron) through the biological oxidation reaction. To develop rate expressions for the kinetics of bacterial growth and zinc leaching, the two bacterial actions were considered. The key parameters appearing in the rate equations, the growth yield and specific growth rate of adsorbed bacteria, were evaluated by curve fitting using the experimental data. This kinetic model allowed us to predict the liquid-phase concentrations of the leached zinc and free cells during the batch bioleaching process.  相似文献   

4.
The results of modeling the biooxidation of a mixed sulfidic concentrate by Thiobacillus ferrooxidans is reported here. A kinetic model, which accounts for the dissolution of sulfide matrix due to both bacterial attachment onto the mineral surface and indirect leaching, has been proposed. A comprehensive system approach is employed for modeling the complex biooxidation process by (a) the decomposition of the complete system into several subsystems, (b) modeling individual systems, and (c) integrating the subsystems model in a final system model. The model for subsystems was developed by writing mass balance equations for the different species involved. The bacterial balance accounts for its growth, both on solid substrate and in solution, and for the attachment to and detachment from the surface. The kinetic parameters of the model were determined by designing the experiments in such a manner that only one subsystem was operational. This model was tested in both laboratory scale batch and continuous biooxidation processes. The model predictions agreed with the experimental data reasonably well. A further analysis of the model was carried out to predict the conditions for efficient biooxidation. Studies on the effect of residence time and pulp density on steady-state behavior showed that there is a critical residence time and pulp density below which washout conditions occur. Operation at pulp densities lower than 5% and residence times lower than 72 h was found unfavorable for efficient leaching.  相似文献   

5.
Major parameters of the first stage of leaching of a copper-zinc sulfide product by a culture of Thiobacillus ferrooxidans have been studied, including the effects of solid phase concentration, Fe2+ and Fe3+ ions, pH, and the intensity of mixing. The first stage of leaching of the sulfide raw material is optimum under the following conditions: pH of the original leaching solution equal to 1.6; Fe3+ concentration of order of 10 g/l; and vigorous mixing of the suspension at solid phase concentrations of 30-35%. A theoretical substantiation of the observed dependences is proposed.  相似文献   

6.
Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi   总被引:3,自引:0,他引:3  
The kinetics of bioleaching of pyrite (FeS(2)) by the acidophilic thermophilic bacterium Acidianus brierleyi was studied in a well-mixed batch reactor. Experiments were done at 65 degrees C and pH 1.5 on adsorption of A. brierleyi onto pyrite particles, liquid-phase oxidation of ferrous iron by A. brierleyi, and microbial leaching of pyrite. The adsorption of A. brierleyi was a fast process; equilibrium was attained within the first 30 min of exposure to pyrite. The adsorption equilibrium data were well correlated with the Langmuir isotherm. The oxidation of ferrous iron was markedly accelerated in the presence of A. brierleyi, and the growth yield on ferrous iron was determined. The bioleaching of pyrite by A. brierleyi was found to take place with a direct attack by adsorbed cells on the surface of pyrite, the chemical leaching of pyrite by ferric iron being insignificant. Rate data collected under a wide variety of operating variables were analyzed to determine kinetic and stoichiometric parameters for the microbial pyrite leaching. The specific growth rate on pyrite for A. brierleyi was about four times that for the mesophilic bacterium, Thiobacillus ferrooxidans, whereas the growth yields on pyrite for the two microbes were approximately equal to one another in magnitude. A comparison of A. brierleyi with T. ferrooxidans for pyrite leachability demonstrated the thermophile to be much more effective. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Modeling, simulation, and optimization of bacterial leaching reactors   总被引:3,自引:0,他引:3  
Bacterial leaching represents an unusual problem in biochemical engineering, because the substrate for bacterial growth is not supplied directly, but is a product of another reaction, the leaching of mineral particles. In addition, leaching is a heterogeneous reaction dependent on the particle-size distribution in the feed and on the kinetics of particle shrinkage. In this study, these effects are incorporated in the material balance for each mineral by the number balance. Examination of the number balance gives rise to a novel analysis of the competing technologies for leaching. The model is completed by the addition of material balances for the ferrous and ferric ions, the dissolved oxygen, and for each bacterial species to the number balance for each mineral present in the feed. The model is compared with pilot plant data for three different ores. It is shown that the model is in excellent agreement with the data. The performance of a bacterial leaching reactor is explored using the model, and the washout and sensitivity criteria are determined. It is shown that there are three washout conditions, in which the leaching conversion drops to zero. The washout conditions are dependent on the growth rate of the bacteria, on the rate of dissolution of the mineral, and on the rate of mass transfer of oxygen to the reactor. The critical washout condition is that arising from the rate of mineral dissolution. The optimization of a plant in which continuous tank reactors are configured in series is addressed. This analysis shows that the primary reactor should be between 1.5 and 2 times the size of each of the secondary reactors in a series combination.  相似文献   

8.
The microbiological leaching of a sulfide ore sample was investigated in shake flask experiments. The ore sample contained pyrite, pyrrhotite, pentlandite, sphalerite, and chalcopyrite as the main sulfide minerals. The tests were performed at eight different temperatures in the range of 4 to 37°C. The primary data were used for rate constant calculations, based on kinetic equations underlying two simplified models of leaching, i.e., a shrinking particle model and a shrinking core model. The rate constants thus derived were further used for the calculation of activation energy values for some of the sulfide minerals present in the ore sample. The chalcopyrite leaching rates were strongly influenced by the interaction of temperature, pH, and redox potential. Sphalerite leaching could be explained with the shrinking particle model. The data on pyrrhotite leaching displayed good fit with the shrinking core model. Pyrite leaching was found to agree with the shrinking particle model. Activation energies calculated from the rate of constants suggested that the rate-limiting steps were different for the sulfide minerals examined; they could be attributed to a chemical or biochemical reaction rather than to diffusion control.  相似文献   

9.
The leaching of iron pyrite by Thiobacillus ferrooxidans was studied in a continuous stirred tank reactor at a variety of dilution rates (0.012-0.22 h(-1)), pyrite surface areas (18-194 m(2)/L), and inlet soluble substrate (Fe(2+)) concentrations (0-3000 ppm). The bacterial leaching rate was found to increase with increasing pyrite surface area, dilution rate, and inlet Fe(2+) concentration. The concentration of bacteria in solution was related to the concentration of bacteria attached to the pyrite surface by a Langmuir-type adsorption-desorption relation. Fitting the experimental data to this relation yielded a value for the area occupied per bacterium of 86 mum(2). This result is consistent with the concept of preferential bacterial attachment of certain sites on the solid. A bacterial growth model was developed that included both bacterial growth in solution and growth of bacteria attached to the pyrite surface. The specific growth rate of the attached bacteria was calculated from this model and was found to increase with increasing solid dilution rate and to decrease with increasing pyrite surface area and soluble substance concentration. An explanation of these results based on an active-inactive site mechanisms was also developed.  相似文献   

10.
A zinc sulfide concentrate was leached microbiologically by Thiobacillus ferrooxidans in a continuous stirred tank reactor. A model was developed to predict, the leaching kinetics when the bacterial growth rate was not limited by any substrate other than the zinc concentrate, and it was modified to explain the observed results. Stable steady sates were obtained over a range of dilution rates from 0.0171 to 0.1038 hr?1. Because a solid substrate was used, the specific growth rate of the bacaeria was not a unique function of the subastrate concentration, and conventional contnuous culture theory based on the Monod equation did not apply to this system. The leaching rates and bacterial growth rates were first order in mineral surface area cocentration.  相似文献   

11.
Plasmid profiles were studied in five Acidithiobacillus ferrooxidans strains of various origin cultivated on medium with Fe2+, as well as adapted to such oxidation substrates as S0, FeS2, and sulfide concentrate. The method used revealed plasmids in all A. ferrooxidans strains grown on medium with Fe2+. One plasmid was found in strain TFL-2, two plasmids, in strains TFO, TFBk, and TFV-1, and three plasmids were detected in strain TFN-d. The adaptation of strain TFN-d to sulfide concentrate and the adaptation of strain TFV-1 to S0, FeS2, or sulfide concentrate resulted in a change in the number of plasmids occurring in cells. In cells of strain TFN-d adapted to sulfide concentrate, the number of plasmids decreased from three to two. The number of plasmids in cells of strain TFV-1 adapted to different substrates varied from three to six depending on the energy source present in the medium: three plasmids were found after growth on FeS2, four after growth on S0, and six after growth on sulfide concentrate. The possible role of plasmids in the adaptation of A. ferrooxidans to new energy substrates and in the regulation of the intensity of their oxidation is discussed.  相似文献   

12.
Bacterial leaching of a sulfide ore containing pyrite, chalcopyrite, and sphalerite was studied in shake flask experiments using Thiobacillus ferrooxidans and Thiobacillus thiooxidans strains isolated from mine sites. The Fe(2+)grown T. ferrooxidans isolates solubilized sphalerite preferentially over chalcopyrite leaching 7-10% Cu, 68-76% Zn, and 10-22% Fe from the ore in 18 days. The sulfur grown T. thiooxidans isolates leached Zn much more slowly and very little Fe, with a Cu-Zn extraction ratio twice the value obtained with T. ferrooxidans. The ore adapted T. ferrooxidans started solubilizing Cu and Zn without a lag period. The ore-adapted T. thiooxidans extracted Cu as well as T. ferrooxidans, but the extraction of Zn or Fe was still much slower in the low-phosphate medium, while in the high-phosphate medium it approached the value obtained with T. ferrooxidans. A high Cu-Zn extraction ratio of 0.34 was obtained with T. thiooxidans in the low phosphate medium. In the mixed-culture experiments with T. ferrooxidans and T. thiooxidans, the culture behaved as T. thiooxidans in the low-phosphate medium with a higher Cu-Zn extraction ratio and as T. ferrooxidans in the high-phosphate medium with a lower Cu-Zn extraction ratio. It is concluded that T. ferrooxidans and T. thiooxidans solubilize sulfide minerals by different mechanisms.  相似文献   

13.
The evolution of microbial populations involved in simulated-heap leaching of a polymetallic black schist sulfide ore (from the recently-commissioned Talvivaara mine, Finland) was monitored in aerated packed bed column reactors over a period of 40 weeks. The influence of ore particle size (2-6.5 mm and 6.5-12 mm) on changes in composition of the bioleaching microflora and mineral leaching dynamics in columns was investigated and compared to fine-grain (<2 microm) ore that was bioprocessed in shake flask cultures. Both column reactors and shake flasks were inoculated with 24 different species and strains of mineral-oxidizing and other acidophilic micro-organisms, and maintained at 37 degrees C. Mineral oxidation was most rapid in shake flask cultures, with about 80% of both manganese and nickel and 68% of zinc being leached within 6 weeks, though relatively little of the copper present in the ore was solubilised. The microbial consortium that emerged from the original inoculum was relatively simple in shake flasks, and was dominated by the iron-oxidizing autotroph Leptospirillum ferriphilum, with smaller numbers of Acidimicrobium ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans. Both metal recovery and (for the most part) total numbers of prokaryotes were greater in the column reactor containing the medium-grain than that containing the coarse-grain ore. The bioleaching communities in the columns displayed temporal changes in composition and differed radically from those in shake flask cultures. While iron-oxidizing chemoautotrophic bacteria were always the most numerically dominant bacteria in the medium-grain column bioreactor, there were major shifts in the most abundant species present, with the type strain of Acidithiobacillus ferrooxidans dominating in the early phase of the experiment and other bacteria (At. ferrooxidans NO37 and L. ferriphilum) dominating from week 4 to week 40. With the coarse-grain column bioreactor, similar transitions in populations of iron-oxidizing chemoautotrophs were observed, though heterotrophic acidophiles were often the most abundant bacteria found in mineral leach liquors. Four bacteria not included in the mixed culture used to inoculate the columns were detected by biomolecular techniques and three of these (all Alicyclobacillus-like Firmicutes) were isolated as pure cultures. The fourth bacterium, identified from a clone library, was related to the Gram-positive sulfate reducer Desulfotomaculum salinum. All four were considered to have been present as endospores on the dried ore, which was not sterilized in the column bioreactors. Two of the Alicyclobacillus-like isolates were found, transiently, in large numbers in mineral leachates. The data support the hypothesis that temporal and spatial heterogeneity in mineral heaps create conditions that favour different mineral-oxidizing microflora, and that it is therefore important that sufficient microbial diversity is present in heaps to optimize metal extraction.  相似文献   

14.
The purpose of this study was to assess the retention ability of 12 different Saccharomyces sp. yeast strains with flocculent characteristics when inoculated in a continuous ethanol fermentation process. The system was comprised of two reactors connected in series with no cell recycling. The feeding substrate used was a synthetic medium containing glucose. The parameters assessed were total reducing sugars of the feeding substrate, total reducing sugars and ethanol at the outlet of the first and second reactors and quantification and classification of yeast population in the two reactors. The system reached yield levels of 83.53% of theoretical yield with a maximum total reducing sugars conversion of 92.68%. The conversion in this system was lower than expected. The dominant yeast in the process in both reactors, contrary to expectation, was the Saccharomyces CP6 strain which was unable to form pellets in spite of its flocculate growth.  相似文献   

15.
A novel mineral flotation process using Thiobacillus ferrooxidans.   总被引:1,自引:0,他引:1  
Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals.  相似文献   

16.
A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-descrption constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.  相似文献   

17.
Bacterial leaching of sulfide ores using Thiobacillus ferrooxidans, Thiobacillus thiooxidans, or a combination of the two was studied at various concentrations of specific anions. Selective zinc and copper solubilization was obtained by inhibiting iron oxidation without affecting sulfur/sulfide oxidation. Phosphate reduced iron solubilization from a pyrite (FeS(2))-sphalerite (ZnS) mixture without significantly affecting zinc solubilization. Copper leaching from a chalcopyrite (CuFeS(2))-sphalerite mixture was stimulated by phosphate, whereas chloride accelerated zinc extraction. In a complex sulfide ore containing pyrite, chalcopyrite, and sphalerite, both phosphate and chloride reduced iron solubilization and increased copper extraction, whereas only chloride stimulated zinc extraction. Maximum leaching obtained was 100% zinc and 50% copper. Time-course studies of copper and zinc solubilization suggest the possibility of selective metal recovery following treatment with specific anions.  相似文献   

18.
Extensive bacterial growth was observed when copper sulfide ores were leached with 0.6 N sulfuric acid. The bacterial population developed in this condition was examined by characterization of the spacer regions between the 16S and 23S rRNA genetic loci obtained after PCR amplification of the DNA extracted from the leached ore. The spacers observed had the sizes found in strains of "Leptospirillum ferrooxidans" and Thiobacillus thiooxidans, except for a larger one, approximately 560 bp long, that was not observed in any of the strains examined, including those of Thiobacillus ferrooxidans. The bacteria with this last spacer were selected after culturing in mineral and elemental sulfur media containing 0.7 N sulfuric acid. The spacer and the 16S ribosomal DNA of this isolate were sequenced and compared with those in species commonly found in bioleaching processes. Though the nucleotide sequence of the spacer showed an extensive heterologous region with T. thiooxidans, the sequence of its 16S rDNA gene indicated a close relationship (99.85%) with this species. These results indicate that a population comprised of bacterial strains closely related to T. thiooxidans and of another strain, possibly related to "L. ferrooxidans," can develop during leaching at high sulfuric acid concentration. Iron oxidation in this condition is attributable to "L. ferrooxidans" and not T. ferrooxidans, based on the presence of spacers with the "L. ferrooxidans" size range and the absence of spacers characteristic of T. ferrooxidans.  相似文献   

19.
Hydrogen sulfide dissolved in water can be converted to elementary sulfur or sulfate by the photosynthetic bacterium Chlorobium thiosulfatophilum. Substrate inhibition occurred at sulfide concentrations above 5.7 mM. Light inhibition was found at average light intensities of 40,000 lux in a sulfide concentration of 5 mM, where no substrate inhibition occurred. Light intensity, the most important growth parameter, was attenuated through both scattering by sulfur particles and absorption by the cells. Average cell and sulfur particle sizes were 1.1 and 9.4 mum, respectively. Cells contributed 10 times as much to the turbidity as sulfur particles of the same weight concentration. The light attenuation factor was mathematically modeled, considering both the absorption and scattering effects based on the Beer-Lambert law and the Rayleigh theory, which were introduced to the cell growth model. Optimal operational conditions relating feed rate vs. light intensity were obtained to suppress the accumulation of sulfate and sulfide and save light energy for 2- and 4-L fed-batch reactors. Light intensity should be greater for the same performance (H(2)S removal rate/unit cell concentration) in larger reactors due to the scaleup effect on light transmission. Knowledge of appropriate growth kinetics in photosynthetic fed-batch reactors was essential to increase feed rate and light intensity and therefore cell growth. A mathematical model was developed that describes the cell growth by considering the light attenuation factor due to scattering and absorption and the crowding effect of the cells. This model was in good agreement with the experimental results. (c) 1992 John Wiley & Sons, Inc.  相似文献   

20.
The concentrations of ferrous and ferric ions change dramatically during the course of the batch experiments usually performed to study the kinetics of the bacterial oxidation of ferrous ions and sulfide minerals. This change in concentration of the iron species during the course of the experiment often makes it difficult to interpret the results of these experiments, as is evidenced by the lack of consensus concerning the mechanism of bacterial leaching. If the concentrations of ferrous and ferric ions were constant throughout the course of the batch experiment, then the role of the bacteria could be easily established, because the rate of the chemical leaching should be the same at a given redox potential in the presence and in the absence of bacteria. In this paper we report an experiment designed to obtain kinetic data under these conditions. The redox potential is used as a measure of the concentrations of ferrous and ferric ions, and the redox potential of the leaching solution is controlled throughout the experiment by electrolysis. The effects of ferrous, ferric, and arsenite ions on the rate of growth of Thiobacillus ferrooxidans on ferrous ions in this redox-controlled reactor are presented. In addition, the growth of this bacterium on ferrous ions in batch culture was also determined, and it is shown that the parameters obtained from the batch culture and the redox-controlled batch culture are the same. An analysis of the results from the batch culture indicates that the initial number of bacteria that are adapted to the solution depends on the concentrations of ferrous and arsenite ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号