首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We argue the significance of a fundamental shift in bioinformatics, from in-the-small to in-the-large. Adopting a large-scale perspective is a way to manage the problems endemic to the world of the small-constellations of incompatible tools for which the effort required to assemble an integrated system exceeds the perceived benefit of the integration. Where bioinformatics in-the-small is about data and tools, bioinformatics in-the-large is about metadata and dependencies. Dependencies represent the complexities of large-scale integration, including the requirements and assumptions governing the composition of tools. The popular make utility is a very effective system for defining and maintaining simple dependencies, and it offers a number of insights about the essence of bioinformatics in-the-large. Keeping an in-the-large perspective has been very useful to us in large bioinformatics projects. We give two fairly different examples, and extract lessons from them showing how it has helped. These examples both suggest the benefit of explicitly defining and managing knowledge flows and knowledge maps (which represent metadata regarding types, flows, and dependencies), and also suggest approaches for developing bioinformatics database systems. Generally, we argue that large-scale engineering principles can be successfully adapted from disciplines such as software engineering and data management, and that having an in-the-large perspective will be a key advantage in the next phase of bioinformatics development.  相似文献   

2.
3.
4.
5.
The emerging field of systems biology seeks to develop novel approaches to integrate heterogeneous data sources for effective analysis of complex living systems. Systemic studies of mitochondria have generated a large number of proteomic data sets in numerous species, including yeast, plant, mouse, rat, and human. Beyond component identification, mitochondrial proteomics is recognized as a powerful tool for diagnosing and characterizing complex diseases associated with these organelles. Various proteomic techniques for isolation and purification of proteins have been developed; each tailored to preserve protein properties relevant to study of a particular disease type. Examples of such techniques include immunocapture, which minimizes loss of posttranslational modification, 4-iodobutyltriphenylphosphonium labeling, which quantifies protein redox states, and surface-enhanced laser desorption ionization-time-of-flight mass spectrometry, which allows sequence-specific binding. With the rapidly increasing number of discovered molecular components, computational models are also being developed to facilitate the organization and analysis of such data. Computational models of mitochondria have been accomplished with top-down and bottom-up approaches and have been steadily improved in size and scope. Results from top-down methods tend to be more qualitative but are unbiased by prior knowledge about the system. Bottom-up methods often require the incorporation of a large amount of existing data but provide more rigorous and quantitative information, which can be used as hypotheses for subsequent experimental studies. Successes and limitations of the studies reviewed here provide opportunities and challenges that must be addressed to facilitate the application of systems biology to larger systems. constraint-based modeling; kinetics-based modeling; data integration; standards; bioinformatics  相似文献   

6.
Filizola M  Weinstein H 《The FEBS journal》2005,272(12):2926-2938
To achieve a structural context for the analysis of G-protein coupled receptor (GPCR) oligomers, molecular modeling must be used to predict the corresponding interaction interfaces. The task is complicated by the paucity of detailed structural data at atomic resolution, and the large number of possible modes in which the bundles of seven transmembrane (TM) segments of the interacting GPCR monomers can be packed together into dimers and/or higher-order oligomers. Approaches and tools offered by bioinformatics can be used to reduce the complexity of this task and, combined with computational modeling, can serve to yield testable predictions for the structural properties of oligomers. Most of the bioinformatics methods take advantage of the evolutionary relation that exists among GPCRs, as expressed in their sequences and measurable in the common elements of their structural and functional features. These common elements are responsible for the presence of detectable patterns of motifs and correlated mutations evident from the alignment of the sequences of these complex biological systems. The decoding of these patterns in terms of structural and functional determinants can provide indications about the most likely interfaces of dimerization/oligomerization of GPCRs. We review here the main approaches from bioinformatics, enhanced by computational molecular modeling, that have been used to predict likely interfaces of dimerization/oligomerization of GPCRs, and compare results from their application to rhodopsin-like GPCRs. A compilation of the most frequently predicted GPCR oligomerization interfaces points to specific regions of TMs 4-6.  相似文献   

7.
In this article we present magnetic resonance microscopy (MRM) characterization of the advective transport in a biofilm capillary reactor. The biofilm generates non-axial flows that are up to 20% of the maximum axial velocity. The presence of secondary velocities of this magnitude alters the mass transport in the bioreactor relative to non-biofilm fouled reactors and questions the applicability of empirical mass transfer coefficient approaches. The data are discussed in the context of simulations and models of biofilm transport and conceptual aspects of transport modeling in complex flows are also discussed. The variation in the residence time distribution due to biofilm growth is calculated from the measured propagator of the motion. Dynamical systems methods applied to model fluid mixing in complex flows are indicated as a template for extending mass transport theory to quantitatively incorporate microscale data on the advection field into macroscale mass transfer models.  相似文献   

8.
Bayesian methods are valuable, inter alia, whenever there is a need to extract information from data that are uncertain or subject to any kind of error or noise (including measurement error and experimental error, as well as noise or random variation intrinsic to the process of interest). Bayesian methods offer a number of advantages over more conventional statistical techniques that make them particularly appropriate for complex data. It is therefore no surprise that Bayesian methods are becoming more widely used in the fields of genetics, genomics, bioinformatics and computational systems biology, where making sense of complex noisy data is the norm. This review provides an introduction to the growing literature in this area, with particular emphasis on recent developments in Bayesian bioinformatics relevant to computational systems biology.  相似文献   

9.
Biology, chemistry and medicine are faced by tremendous challenges caused by an overwhelming amount of data and the need for rapid interpretation. Computational intelligence (CI) approaches such as artificial neural networks, fuzzy systems and evolutionary computation are being used with increasing frequency to contend with this problem, in light of noise, non-linearity and temporal dynamics in the data. Such methods can be used to develop robust models of processes either on their own or in combination with standard statistical approaches. This is especially true for database mining, where modeling is a key component of scientific understanding. This review provides an introduction to current CI methods, their application to biological problems, and concludes with a commentary about the anticipated impact of these approaches in bioinformatics.  相似文献   

10.
Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology.  相似文献   

11.
陈铭 《生物信息学》2022,20(2):75-83
随着生物数据测量技术的不断发展,生物数据的类型、内容、复杂度不断增加,生物信息学已迈入大数据时代。面对大数据时代多模态、多层次、高维度、非线性的复杂生物数据,生物信息学需要发展相应的方法和技术进行有效整合生物信息学研究与应用。本文对大数据时代整合生物信息学所涉及的数据整合、方法整合、系统整合及相关问题进行梳理和探讨。  相似文献   

12.
The Chukchi Sea is a seasonally ice-covered, marginal Arctic-shelf sea that possesses both large petroleum reserves and abundant biological communities, including migratory mammals and seabirds. We developed a mass balance food web model for the eastern Chukchi Sea to evaluate the trophic structure of this ecosystem and to compare food web properties of the Chukchi Sea to those of other high-latitude marine ecosystems. We compiled data on biomass levels, diet composition, demographic rates (production, consumption), and fishery removals, and used these data to construct an Ecopath trophic mass balance model. The majority of biomass was concentrated in benthic invertebrates and most of the mass flow above trophic level 2.0 was through these groups. We found that density estimates of most fish groups derived from trawl survey data using area-swept methods were insufficient to match the consumptive demands of predators, and that densities needed to be several-fold greater to meet modeled demand. We also used a set of system metrics derived from a common modeling framework to highlight differences in ecosystem structure between the eastern Chukchi Sea and other high-latitude systems. The extent of benthic dominance observed in the eastern Chukchi Sea was unique among the systems examined, both in terms of food web structure and associated mass flows between benthic and pelagic components. In relation to total biomass density, the eastern Chukchi Sea had low production when compared with the other systems, and this lower turnover rate suggests that recovery from disturbance might be slow.  相似文献   

13.
The intermediary steps between a biological hypothesis, concretized in the input data, and meaningful results, validated using biological experiments, commonly employ bioinformatics tools. Starting with storage of the data and ending with a statistical analysis of the significance of the results, every step in a bioinformatics analysis has been intensively studied and the resulting methods and models patented. This review summarizes the bioinformatics patents that have been developed mainly for the study of genes, and points out the universal applicability of bioinformatics methods to other related studies such as RNA interference. More specifically, we overview the steps undertaken in the majority of bioinformatics analyses, highlighting, for each, various approaches that have been developed to reveal details from different perspectives. First we consider data warehousing, the first task that has to be performed efficiently, optimizing the structure of the database, in order to facilitate both the subsequent steps and the retrieval of information. Next, we review data mining, which occupies the central part of most bioinformatics analyses, presenting patents concerning differential expression, unsupervised and supervised learning. Last, we discuss how networks of interactions of genes or other players in the cell may be created, which help draw biological conclusions and have been described in several patents.  相似文献   

14.
Over the past 2 decades, there have been revolutionary developments in life science technologies characterized by high throughput, high efficiency, and rapid computation. Nutritionists now have the advanced methodologies for the analysis of DNA, RNA, protein, low-molecular-weight metabolites, as well as access to bioinformatics databases. Statistics, which can be defined as the process of making scientific inferences from data that contain variability, has historically played an integral role in advancing nutritional sciences. Currently, in the era of systems biology, statistics has become an increasingly important tool to quantitatively analyze information about biological macromolecules. This article describes general terms used in statistical analysis of large, complex experimental data. These terms include experimental design, power analysis, sample size calculation, and experimental errors (Type I and II errors) for nutritional studies at population, tissue, cellular, and molecular levels. In addition, we highlighted various sources of experimental variations in studies involving microarray gene expression, real-time polymerase chain reaction, proteomics, and other bioinformatics technologies. Moreover, we provided guidelines for nutritionists and other biomedical scientists to plan and conduct studies and to analyze the complex data. Appropriate statistical analyses are expected to make an important contribution to solving major nutrition-associated problems in humans and animals (including obesity, diabetes, cardiovascular disease, cancer, ageing, and intrauterine growth retardation).  相似文献   

15.
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches – based on the data collected with high throughput technologies – to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.  相似文献   

16.
17.
It is proposed that computational systems biology should be considered a biomolecular technique of the twenty-first century, because it complements experimental biology and bioinformatics in unique ways that will eventually lead to insights and a depth of understanding not achievable without systems approaches. This article begins with a summary of traditional and novel modeling techniques. In the second part, it proposes concept map modeling as a useful link between experimental biology and biological systems modeling and analysis. Concept map modeling requires the collaboration between biologist and modeler. The biologist designs a regulated connectivity diagram of processes comprising a biological system and also provides semi-quantitative information on stimuli and measured or expected responses of the system. The modeler converts this information through methods of forward and inverse modeling into a mathematical construct that can be used for simulations and to generate and test new hypotheses. The biologist and the modeler collaboratively interpret the results and devise improved concept maps. The third part of the article describes software, BST-Box, supporting the various modeling activities.  相似文献   

18.
MOTIVATION: We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. RESULTS: In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. AVAILABILITY: Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/  相似文献   

19.
RATIONALE: Modern molecular biology is generating data of unprecedented quantity and quality. Particularly exciting for biochemical pathway modeling and proteomics are comprehensive, time-dense profiles of metabolites or proteins that are measurable, for instance, with mass spectrometry, nuclear magnetic resonance or protein kinase phosphorylation. These profiles contain a wealth of information about the structure and dynamics of the pathway or network from which the data were obtained. The retrieval of this information requires a combination of computational methods and mathematical models, which are typically represented as systems of ordinary differential equations. RESULTS: We show that, for the purpose of structure identification, the substitution of differentials with estimated slopes in non-linear network models reduces the coupled system of differential equations to several sets of decoupled algebraic equations, which can be processed efficiently in parallel or sequentially. The estimation of slopes for each time series of the metabolic or proteomic profile is accomplished with a 'universal function' that is computed directly from the data by cross-validated training of an artificial neural network (ANN). CONCLUSIONS: Without preprocessing, the inverse problem of determining structure from metabolic or proteomic profile data is challenging and computationally expensive. The combination of system decoupling and data fitting with universal functions simplifies this inverse problem very significantly. Examples show successful estimations and current limitations of the method. AVAILABILITY: A preliminary Web-based application for ANN smoothing is accessible at http://bioinformatics.musc.edu/webmetabol/. S-systems can be interactively analyzed with the user-friendly freeware PLAS (http://correio.cc.fc.ul.pt/~aenf/plas.html) or with the MATLAB module BSTLab (http://bioinformatics.musc.edu/bstlab/), which is currently being beta-tested.  相似文献   

20.
With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号