首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported previously the purification of a 165-kDa muscle-specific protein identified by virtue of its ability to bind 125I-labeled low density lipoprotein with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Hoffmann, S. L., Brown, M. S., Lee, E., Pathak, R. K., Anderson, R. G. W., and Goldstein, J. J. (1989) J. Biol. Chem. 264, 8260-8270). The protein is located in the lumen of the sarcoplasmic reticulum, where it has no access to plasma lipoproteins. It binds to 45Ca2+ on nitrocellulose blots and stains metachromatically blue with Stains-all, a cationic dye that stains Ca2+-binding proteins. In the current paper, we have isolated a full-length rabbit cDNA clone for the 165-kDa protein. The deduced amino acid sequence reveals a 852-amino acid protein with the following structural features: 1) an NH2-terminal 27-residue putative signal sequence; 2) a highly repetitive region containing nine nearly identical tandem repeats of 29 residues, each consisting of a histidine-rich sequence HRHRGH, a stretch of 10-11 acidic amino acids, and a sequence containing 2 serines and a threonine in a negatively charged context; 3) a 13-residue stretch of polyglutamic acid; and 4) a COOH-terminal cluster of 14 closely spaced cysteine residues with the repeating pattern of Cys-X-X-Cys suggestive of a heavy metal binding domain. Histidine, aspartic acid, and glutamic acid accounted, respectively, for 13, 12, and 19% of the amino acids. The protein does not share any significant sequence homology with the cell surface low density lipoprotein receptor. Stretches of acidic amino acids are a feature of two other luminal sarcoplasmic reticulum proteins, suggesting that these may be a general feature of luminal sarcoplasmic reticulum proteins. We suggest that the histidine-rich Ca2+-binding protein described in the current study be designated HCP. The role of HCP in Ca2+ homeostasis in the sarcoplasmic reticulum of skeletal and cardiac muscle remains to be determined.  相似文献   

2.
We have cloned cDNAs encoding the rabbit and human forms of the Ca2+ release channel of sarcoplasmic reticulum. The human cDNA encodes a protein of 5032 amino acids, with a molecular weight of 563,584, which is made without an NH2-terminal signal sequence. Amino acid substitutions between rabbit and human sequences were noted in 163 positions and deletions or insertions in eight regions accounted for additional sequence differences between the two proteins. Analysis of the sequence indicates that 10 potential transmembrane sequences in the COOH-terminal fifth of the molecule and two additional, potential transmembrane sequences nearer to the center of the molecule could contribute to the formation of the Ca2+ conducting pore. The remainder of the molecule is hydrophilic and presumably constitutes the cytoplasmic domain of the protein. A 114-120 amino acid motif is repeated four times in the protein, in residues 841-954, 955-1068, 2725-2844, and 2845-2958 and a 16 amino acid part of the motif is repeated twice more in residues 1344-1359 and 1371-1386. Although the channel is modulated by Ca2+, ATP, and calmodulin, no clear high affinity Ca2(+)-binding domain of the EF hand type and no clear high affinity ATP-binding domain were detected in the primary sequence. An acidic sequence in residues 1872-1923 contains 79% glutamate or aspartate residues and this sequence is a potential low affinity Ca2(+)-binding site. Several potential calmodulin-binding sites were observed in the sequence, in the region 2800 to 3050.  相似文献   

3.
A cDNA clone encoding 55-kDa multifunctional, thyroid hormone binding protein of rabbit skeletal muscle sarcoplasmic reticulum was isolated and sequenced. The cDNA encoded a protein of 509 amino acids, and a comparison of the deduced amino acid sequence with the NH2-terminal amino acid sequence of the purified protein indicates that an 18-residue NH2-terminal signal sequence was removed during synthesis. The deduced amino acid sequence of the rabbit muscle clone suggested that this protein is related to human liver thyroid hormone binding protein, rat liver protein disulfide isomerase, human hepatoma beta-subunit of prolyl 4-hydroxylase and hen oviduct glycosylation site binding protein. The protein contains two repeated sequences Trp-Cys-Gly-His-Cys-Lys proposed to be in the active sites of protein disulfide isomerase. Northern blot analysis showed that the mRNA encoding rabbit skeletal muscle form of the protein is present in liver, kidney, brain, fast- and slow-twitch skeletal muscle, and in the myocardium. In all tissues the cDNA reacts with mRNA of 2.7 kilobases in length. The 55-kDa multifunctional thyroid hormone binding protein was identified in isolated sarcoplasmic reticulum vesicles using a monoclonal antibody specific to the 55-kDa thyroid hormone binding protein from rat liver endoplasmic reticulum. The mature protein of Mr 56,681 contains 95 acidic and 61 basic amino acids. The COOH-terminal amino acid sequence of the protein is highly enriched in acidic residues with 17 of the last 29 amino acids being negatively charged. Analysis of hydropathy of the mature protein suggests that there are no potential transmembrane segments. The COOH-terminal sequence of the protein, Arg-Asp-Glu-Leu (RDEL), is similar to but different from that proposed to be an endoplasmic reticulum retention signal; Lys-Asp-Glu-Leu (KDEL) (Munro, S., and Pelham, H.R.B. (1987) Cell 48, 899-907). This variant of the retention signal may function in a similar manner to the KDEL sequence, to localize the protein to the sarcoplasmic or endoplasmic reticulum. The positively charged amino acids Lys and Arg may thus interchange in this retention signal.  相似文献   

4.
Many proteins retained within the endo/sarcoplasmic reticulum (ER/SR) lumen express the COOH-terminal tetrapeptide KDEL, by which they continuously recycle from the Golgi complex; however, others do not express the KDEL retrieval signal. Among the latter is calsequestrin (CSQ), the major Ca2+-binding protein condensed within both the terminal cisternae of striated muscle SR and the ER vacuolar domains of some neurons and smooth muscles. To reveal the mechanisms of condensation and establish whether it also accounts for ER/SR retention of CSQ, we generated a variety of constructs: chimeras with another similar protein, calreticulin (CRT); mutants truncated of COOH- or NH2-terminal domains; and other mutants deleted or point mutated at strategic sites. By transfection in L6 myoblasts and HeLa cells we show here that CSQ condensation in ER-derived vacuoles requires two amino acid sequences, one at the NH2 terminus, the other near the COOH terminus. Experiments with a green fluorescent protein GFP/CSQ chimera demonstrate that the CSQ-rich vacuoles are long-lived organelles, unaffected by Ca2+ depletion, whose almost complete lack of movement may depend on a direct interaction with the ER. CSQ retention within the ER can be dissociated from condensation, the first identified process by which ER luminal proteins assume a heterogeneous distribution. A model is proposed to explain this new process, that might also be valid for other luminal proteins.  相似文献   

5.
We have isolated four insulin-like growth factor binding proteins (IGFBPs) from adult human serum by insulin-like growth factor (IGF) I affinity chromatography and high performance liquid chromatography. A 36-kDa binding protein (BP), not digestible with N-glycanase, is increased in patients with extrapancreatic tumor hypoglycemia and during IGF I administration in healthy adults. Its 38 NH2-terminal amino acids are identical to those of an IGFBP sequence derived from a human cDNA that cross-hybridizes with the rat IGFBP-2 cDNA. With probes encoding a NH2-terminal, COOH-terminal, and a middle region of this protein we have obtained three cDNA clones from a Hep G2 cDNA library; one encodes human IGFBP-2, and the other two presumably represent unspliced heteronuclear and alternatively spliced mRNA, respectively. A 28-30-kDa IGFBP represents a novel BP species in human serum. Its 30 NH2-terminal amino acids are not homologous to IGFBP-1, -2, or -3. It is not digestible with N-glycanase and does not bind 125I-IGF I. The NH2-terminal sequences of a 42/45- and a 31-kDa IGFBP are identical to that of human IGFBP-3. The 42/45-kDa proteins are two glycosylation variants of BP-3. The 31-kDa protein presumably is a degradation product of BP-3 that lacks the COOH terminus. It is likely that the different IGFBPs modulate auto-/paracrine and endocrine effects of IGFs on growth and metabolism in a different and specific manner.  相似文献   

6.
The 53-kDa glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum was purified by lentil lectin affinity chromatography and preparative polyacrylamide gel electrophoresis and partially sequenced. Polyclonal and monoclonal antibodies were raised against the 53-kDa glycoprotein and found to cross-react with the 160-kDa glycoprotein. A combination of antibody and synthetic oligonucleotide screening was used to isolate a cDNA encoding the 53-kDa glycoprotein of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum. The cDNA encodes a protein of 453 amino acids with Mr of 52,421 and a 19-residue amino-terminal signal sequence. The deduced sequence contains two potential glycosylation sites and is largely hydrophilic. The presence of a glycine-rich sequence in the glycoprotein with homology to mononucleotide binding domains supports earlier observations that the glycoprotein binds ATP with high affinity. Although two sequences appear to be hydrophobic on a hydropathy plot, they are not sufficiently long nor sufficiently hydrophobic to qualify unambiguously as transmembrane sequences. The glycoprotein, like calsequestrin, was shown to be inaccessible to trypsin in intact sarcoplasmic reticulum. It can be eluted from the sarcoplasmic reticulum by extraction with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid under hypotonic conditions. Thus, the glycoprotein appears to be localized entirely in the lumen of the sarcoplasmic reticulum and to be associated with the inner membrane surface through Ca2+-dependent mechanisms. Cotransfection of COS-1 cells with cDNAs encoding the glycoprotein and the Ca2+-ATPase led to expression of both proteins with a common localization in the microsomal fraction. The Ca2+ pumping activity of the microsomes isolated from transfected cells was unaltered by the presence of the glycoprotein. Thus the glycoprotein does not appear to modulate Ca2+-ATPase function.  相似文献   

7.
cDNA cloning was used to deduce the complete amino acid sequence of canine cardiac calsequestrin, the principal Ca2+-binding protein of cardiac junctional sarcoplasmic reticulum. Cardiac calsequestrin contains 391 amino acid residues plus a 19-residue amino-terminal signal sequence. The molecular weight of the mature protein, excluding carbohydrate, is 45,269. Cardiac calsequestrin is highly acidic, and a striking feature is the enrichment of acidic residues (60%) within the 63 carboxyl-terminal residues. No part of the sequence contains EF hand Ca2+-binding structures. The photo-affinity probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine was used to localize the Ca2+-regulated hydrophobic site to amino acid residues 192-223. The cardiac and skeletal muscle isoforms of calsequestrin (Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. F., and MacLennan, D. H. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1167-1171), although the products of different genes, are 65% identical, are acidic, and share one glycosylation site. However, cardiac calsequestrin has several unique features. First, it has a 31-amino acid extension at its carboxyl terminus (residues 361-391), which contains 71% acidic residues and a second glycosylation site. Second, its mRNA contains a second open reading frame with the capacity to code for a 111-amino acid protein. Third, contrary to the restricted expression of the fast skeletal isoform, cardiac calsequestrin mRNA is present in both cardiac and slow skeletal muscle, but not in fast skeletal muscle. We conclude that the deduced amino acid sequence of cardiac calsequestrin is consistent with its ability to bind large amounts of Ca2+ (40 mol of Ca2+/mol of calsequestrin). The protein probably binds Ca2+ by acting as a charged surface rather than by presenting multiple discrete Ca2+-binding sites.  相似文献   

8.
The (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) of sarcoplasmic reticulum contains a cysteine residue at position 12 of its sequence. This sulfhydryl group was 1 out of a total of 10-11 that were labeled by treatment of sarcoplasmic reticulum vesicles with N-[3H]ethylmaleimide under saturating conditions. This was shown by isolating a 31-residue NH2-terminal peptide from a tryptic digest of the succinylated ATPase, prepared from N-[3H]ethylmaleimide-labeled vesicles. Reaction of the vesicles with glutathione maleimide, parachloromercuribenzoic acid, or parachloromercuriphenyl sulfonic acid, membrane-impermeant reagents, prevented further reaction of sulfhydryl groups with N-ethylmaleimide. This result indicates that all sulfhydryl groups that are reactive with N-ethylmaleimide are on the outside of the vesicles. Since Cys12 is located in a hydrophilic NH2-terminal portion of the ATPase, the labeling results suggest that the NH2 terminus of the ATPase is on the cytoplasmic side of the membrane. These results are consistent with earlier observations (Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 11839-11846) that the (Ca2+ + Mg2+)-ATPase is synthesized without an NH2-terminal signal sequence.  相似文献   

9.
Many bioactive peptides terminate with an amino acid alpha-amide at their COOH terminus. The enzyme responsible for this essential posttranslational modification is known as peptidyl-glycine alpha-amidating monooxygenase or PAM. We identified cDNAs encoding the enzyme by using antibodies to screen a bovine intermediate pituitary lambda gt11 expression library. Antibodies to a beta-galactosidase/PAM fusion protein removed PAM activity from bovine pituitary homogenates. The 108,207 dalton protein predicted by the complete cDNA is approximately twice the size of purified PAM. An NH2-terminal signal sequence and short propeptide precede the NH2 terminus of purified PAM. The sequences of several PAM cyanogen bromide peptides were localized in the NH2-terminal half of the predicted protein. The cDNA encodes an additional 430 amino acid intragranular domain followed by a putative membrane spanning domain and a hydrophilic cytoplasmic domain. The forms of PAM purified from bovine neurointermediate pituitary may be generated by endoproteolytic cleavage at a subset of the 10 pairs of basic amino acids in the precursor. High levels of PAM mRNA were found in bovine pituitary and cerebral cortex. In corticotropic tumor cells, levels of PAM mRNA and pro-ACTH/endorphin mRNA were regulated in parallel by glucocorticoids and CRF.  相似文献   

10.
In a search for the non-muscle equivalent of calsequestrin (the low-affinity high-capacity Ca2(+)-binding protein responsible for Ca2+ storage within the terminal cisternae of the sarcoplasmic reticulum), acidic proteins were extracted from rat liver and brain microsomal preparations and purified by column chromatography. No calsequestrin was observed in these extracts, but the N-terminal amino acid sequence of the major Ca2(+)-binding protein of the liver microsomal fraction was determined and found to correspond to that of calreticulin. This protein was found to bind approx. 50 mol of Ca2+/mol of protein, with low affinity (average Kd approx. 1.0 mM). A monoclonal antibody, C6, raised against skeletal-muscle calsequestrin cross-reacted with calreticulin in SDS/PAGE immunoblots, but polyclonal antibodies reacted with native calreticulin only weakly, or not at all, after SDS denaturation. Immuno-gold decoration of liver ultrathin cryosections with affinity-purified antibodies against liver calreticulin revealed luminal labelling of vacuolar profiles indistinguishable from calciosomes, the subcellular structures previously identified by the use of anti-calsequestrin antibodies. We conclude that calreticulin is the Ca2(+)-binding protein segregated within the calciosome lumen, previously described as being calsequestrin-like. Because of its properties and intraluminal location, calreticulin might play a critical role in Ca2+ storage and release in non-muscle cells, similar to that played by calsequestrin in the muscle sarcoplasmic reticulum.  相似文献   

11.
The interaction of ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]Cl6.4H2O, with various Ca2(+)-binding proteins was studied. Ruthenium red inhibited Ca2+ binding to the sarcoplasmic reticulum protein, calsequestrin, immobilized on Sepharose 4B. Furthermore, ruthenium red bound to calsequestrin with high affinity (Kd = 0.7 microM; Bmax = 218 nmol/mg protein). The dye stained calsequestrin in sodium dodecyl sulfate-polyacrylamide gels or on nitrocellulose paper and was displaced by Ca2+ (Ki = 1.4 mM). The specificity of ruthenium red staining of several Ca2(+)-binding proteins was investigated by comparison with two other detection methods, 45Ca2+ autoradiography and the Stains-all reaction. Ruthenium red bound to the same proteins detected by the 45Ca2+ overlay technique. Ruthenium red stained both the erythrocyte Band 3 anion transporter and the Ca2(+)-ATPase of skeletal muscle sarcoplasmic reticulum. Ruthenium red also stained the EF hand conformation Ca2(+)-binding proteins, calmodulin, troponin C, and S-100. This inorganic dye provides a simple, rapid method for detecting various types of Ca2(+)-binding proteins following electrophoresis.  相似文献   

12.
Cloned cDNAs containing sequences coding for the beta subunit of bovine thyrotropin have been identified. The complete nucleotide sequence of the largest of the beta subunit cDNA inserts has been determined. This cDNA contains 35 nucleotides from the 5' untranslated region of thyrotropin beta subunit mRNA and 60 nucleotides coding for an NH2-terminal precursor segment. This is followed by 339 nucleotides which code for the published amino acid sequence of the thyrotropin beta subunit. Following the 339 nucleotide beta subunit coding sequence, no termination codon is encountered for another 15 nucleotides. Thus, the cDNA codes for a thyrotropin beta subunit containing an additional 5 amino acids at the COOH terminus. The cDNA also contains 82 nucleotides of 3' untranslated sequence followed by a short poly(A) segment. Comparison of the bovine cDNA sequence to the recently described mouse thyrotropin beta subunit cDNA sequence reveals considerable homology throughout the coding sequence, including the COOH-terminal extension. These findings suggest the possibility that a thyrotropin beta subunit precursor is processed at both the NH2 and COOH termini.  相似文献   

13.
A Ca2+-dependent regulator protein of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) has previously been isolated from rat testis and shown to be a heat-stable, Ca2+-binding protein with a molecular weight of approximately 17,000. The Ca2+-dependent regulator protein is also structurally similar to troponin-C, the Ca2+-binding component of muscle troponin and Ca2+ mediator of muscle contraction. The present report describes a partial amino acid sequence of the Ca2+-dependent regulator. The protein (148 amino acids) is 50% homologous with skeletal muscle troponin-C, but is 11 residues shorter than the muscle protein. The Ca2+-dependent regulator protein has an NH2-terminal sequence of acetyl-Ala-Asp-Glu, a COOH-terminal sequence of Thr-Ala-Lys and 1 residue of epsilon-trimethyllysine located at position 115. All of these properties are distinct from those of other homologous Ca2+-binding proteins. These properties may account for the biological specificities demonstrated by these proteins as compared to the Ca2+-dependent regulator protein. Based on the sequence and a comparison of the Ca2+-dependent regulator protein to other calcium-binding proteins, our data support the view that all of these moecules contain common sequences, especially at their proposed metal-binding sites.  相似文献   

14.
The procyclic acidic repetitive protein (PARP) of Trypanosoma brucei was purified by cell fractionation followed by ion-exchange and concanavalin A-Sepharose affinity chromatography. PARP is membrane-bound and comprises about 1% of the total procyclic trypanosome protein or 6 x 10(6) molecules per parasite. The results of NH2-terminal sequencing and amino acid analysis indicate that PARP is processed by removal of an N-terminal signal sequence and the hydrophobic COOH terminus. Metabolic labeling of PARP with [3H] ethanolamine is consistent with attachment of the protein to the membrane via a glycosylphosphatidylinositol anchor. The glycolipid can be removed by base hydrolysis or nitrous acid deamination but is not susceptible to bacterial phosphatidylinositol-specific phospholipase C.  相似文献   

15.
Binding Ca2+ to a high affinity site in protein C and 4-carboxyglutamic acid (Gla)-domainless protein C results in a conformational change that is required for activation by the thrombin-thrombomodulin complex, the natural activator of protein C. It has been hypothesized that this high affinity Ca(2+)-binding site is located in the NH2-terminal epidermal growth factor (EGF) homology region of protein C. We have expressed in human 293 cells a deletion mutant of protein C (E2-PD) which lacks the entire Gla region as well as the NH2-terminal EGF homology region of protein C. Ca2+ inhibits activation of E2-PD or Gla-domainless protein C by thrombin with half-maximal inhibition occurring at Ca2+ concentrations of 103 +/- 11 and 70 +/- 7 microM, respectively, but is required for both E2-PD and Gla-domainless protein C activation by the thrombin-thrombomodulin complex with half-maximal acceleration occurring at Ca2+ concentrations of 87 +/- 8 and 89 +/- 8 microM, respectively. Both E2-PD and Gla-domainless protein C exhibit a reversible, Ca(2+)- but not Mg(2+)-dependent decrease (6 +/- 1%) in fluorescence emission intensity with Kd = 38 +/- 3 microM Ca2+. We conclude that the high affinity Ca(2+)-binding site important for the activation of protein C is located outside of the NH2-terminal EGF homology region and that the metal-binding site in the NH2-terminal EGF homology region may not be a high affinity site in intact protein C.  相似文献   

16.
To locate functional domains of the interleukin-2 (IL-2) protein, a cDNA clone encoding biologically active human IL-2 was mutagenized using synthetic oligonucleotides to incorporate defined amino acid substitutions and deletions in the mature protein. The IL-2 analogs were then produced in Escherichia coli and assayed for the ability to induce proliferation of IL-2-dependent cells and the ability to compete for binding to the IL-2 receptor. Our analysis of over 50 different mutations demonstrated that the integrity of at least three regions of the IL-2 molecule is required for full biological activity: the NH2 terminus (residues 1-20), the COOH terminus (residues 121-133), and 2 of the 3 cysteine residues (58 and 105). Deletion of the NH2-terminal 20 amino acids or the COOH-terminal 10 amino acids resulted in the loss of greater than 99% of bioactivity and binding. Amino acid substitutions at specific positions in these regions also resulted in proteins which retained less than 1% activity. The NH2 terminus and an adjacent internal region were recognized by neutralizing anti-IL-2 antibodies. In combination with the results from epitope competition analysis with neutralizing antibodies, these data are consistent with the IL-2 protein being folded such that the NH2 terminus, the COOH terminus, and the internal 30- to 60-region are juxtaposed to form the binding site recognized by the IL-2 receptor.  相似文献   

17.
Calreticulin is a 60-kDa Ca(2+)-binding protein of the endo(sarco)plasmic reticulum membranes of a variety of cellular systems. The protein binds approximately 25 mol of Ca2+ with low affinity and approximately 1 mol of Ca2+ with high affinity and is believed to be a site for Ca2+ binding/storage in the lumen of the endo(sarco)plasmic reticulum. In the present study, we describe purification procedures for the isolation of recombinant and native calreticulin. Recombinant calreticulin was expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and was purified to homogeneity on glutathione-Sepharose followed by Mono Q FPLC chromatography. A selective ammonium sulfate precipitation method was developed for the purification of native calreticulin. The protein was purified from ammonium sulfate precipitates by diethylaminoethyl-Sephadex and hydroxylapatite chromatography procedures, which eliminates the need to prepare membrane fractions. The purification procedures reported here for recombinant and native calreticulin yield homogeneous preparations of the proteins, as judged by the HPLC reverse-phase chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified native and recombinant calreticulin were identified by their NH2-terminal amino acid sequences, by their Ca2+ binding properties, and by their reactivity with anticalreticulin antibodies.  相似文献   

18.
Muscles of invertebrate species contain abundant quantities of soluble, sarcoplasmic, high affinity Ca2+-binding proteins (SCBPs). The SCBPs belong to the calmodulin superfamily and contain four homologous domains (I-IV) which arose by reduplication of a gene for a small ancestral protein. We have determined the amino acid sequence of the SCBP from the sandworm Nereis diversicolor. This protein is the only SCBP which has been crystallized in a form suitable for three-dimensional structure determination by high-resolution x-ray analysis (Babu, Y. S., Cox, J. A., and Cook, W. J. (1987) J. Biol. Chem. 262, 11184-11185). N. diversicolor SCBP is a single polypeptide chain of 174 amino acids, including single residues of glutamine and histidine, 2 tyrosines, and 3 tryptophans. It is devoid of cysteine and has an acetylated amino terminus, a calculated Mr of 19,485, and a net charge of -13 at neutral pH. There was no evidence for heterogeneity in the sequence. Probable Ca2+-binding sites were recognized in domains I, III, and IV. Comparison with other available invertebrate SCBP sequences shows an unusually high degree of variability among these proteins, with only 9 residues common to all species.  相似文献   

19.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

20.
The E1-glycoprotein (Mr = 26,014; 228 amino acids) of mouse hepatitis virus A59 is a class III membrane glycoprotein which has been used in this study as a model system in the study of membrane integration and protein transport. The protein lacks an NH2-terminal cleavable signal sequence and spans the viral membrane three times. Hydrophobic domains I and III could serve as signal sequences for cotranslational membrane integration. Domain I alone was sufficient to translocate the hydrophilic NH2 terminus of E1 across the membranes as evidenced by glycosylation of a newly introduced N-glycosylation site. The COOH-terminal part of E1 involving amino acids Leu124 to Thr228 was found to associate tightly with membranes at the post-translational level, although this part of the molecule lacks pronounced hydrophobic sequences. Membrane protection assays with proteinase K showed that a 2-kDa hydrophilic fragment was removed from the COOH terminus of E1 indicating that the protein is largely embedded into the membrane. Microinjection of in vitro transcribed capped and polyadenylated mRNA into CV-1 cells or into secretory AtT20 pituitary tumor cells showed that the E1-protein accumulated in the Golgi but was not detectable at the plasma membrane or in secretory granules. The 28 NH2-terminal hydrophilic amino acid residues play no role in membrane assembly or in intracellular targeting. Various NH2-terminal portions of E1 were fused to Ile145 of the cytoplasmic N-protein of mouse hepatitis virus. The resulting hybrid proteins were shown to assemble into membranes in vitro and were detected either in the rough endoplasmic reticulum or transient vesicles of microinjected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号