共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
BACKGROUND: Recent reports identify the 3'-UTR of insulin mRNA as crucial for control of insulin messenger stability. This region contains a pyrimidine-rich sequence, which is similar to the hypoxia-responsive mRNA-stabilizing element of tyrosine hydroxylase. This study aimed to determine whether hypoxia affects insulin mRNA levels. MATERIALS AND METHODS: Rat islets were incubated at normoxic or hypoxic conditions and with or without hydrogen peroxide and a nitric oxide donor. Insulin mRNA was determined by Northern hybridization. Islet homogenates were used for electrophoretic mobility shift assay with an RNA-oligonucleotide, corresponding to the pyrimidine-rich sequence of the 3'-UTR of rat insulin I mRNA. The expression of reporter gene mRNA, in islets transfected with reporter gene constructs containing the wild-type or mutated insulin mRNA pyrimidine-rich sequences, was measured by semiquantitive RT-PCR. RESULTS: Insulin mRNA was increased in response to hypoxia. This was paralleled by increased binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich sequence of the 3'-UTR of insulin mRNA, which was counteracted by hydrogen peroxide. The reporter gene mRNA level containing the wild-type binding site was not increased in response to hypoxia, but mutation of the site resulted in a destabilization of the mRNA. CONCLUSIONS: The complete understanding of different diabetic conditions requires the elucidation of mechanisms that control insulin gene expression. Our data show that hypoxia may increase insulin mRNA levels by promoting the binding of PTB to the insulin mRNA 3'-UTR. Hydrogen peroxide abolishes the hypoxic effect indicating involvement of reactive oxygen species and/or the redox potential in the oxygen-signaling pathway. 相似文献
3.
4.
Polypyrimidine tract-binding protein 1 (PTBP1) and its brainspecific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1. [BMB Reports 2014; 47(4): 233-238] 相似文献
5.
6.
7.
Specific interaction of polypyrimidine tract-binding protein with the extreme 3'-terminal structure of the hepatitis C virus genome, the 3'X. 总被引:2,自引:0,他引:2
下载免费PDF全文

K Tsuchihara T Tanaka M Hijikata S Kuge H Toyoda A Nomoto N Yamamoto K Shimotohno 《Journal of virology》1997,71(9):6720-6726
We previously identified a highly conserved 98-nucleotide (nt) sequence, the 3'X, as the extreme 3'-terminal structure of the hepatitis C virus (HCV) genome (T. Tanaka, N. Kato, M.-J. Cho, and K. Shimotohno, Biochem. Biophys. Res. Commun. 215:744-749, 1995). Since the 3' end of positive-strand viral RNA is the initiation site of RNA replication, the 3'X should contribute to HCV negative-strand RNA synthesis. Cellular factors may also be involved in this replication mechanism, since several cellular proteins have been shown to interact with the 3'-end regions of other viral genomes. In this study, we found that both 38- and 57-kDa proteins in the human hepatocyte line PH5CH bound specifically to the 3'-end structure of HCV positive-strand RNA by a UV-induced cross-linking assay. The 57-kDa protein (p57), which had higher affinities to RNA probes, recognized a 26-nt sequence including the 5'-terminal 19 nt of the 3'X and 7 flanking nt, designated the transitional region. This sequence contains pyrimidine-rich motifs and shows similarity to the consensus binding sequence of the polypyrimidine tract-binding protein (PTB), which has been implicated in alternative pre-mRNA splicing and cap-independent translation. We found that this 3'X-binding p57 is identical to PTB. The 3'X-binding p57 was immunoprecipitated by anti-PTB antibody, and recombinant PTB bound to the 3'X RNA. In addition, p57 bound solely to the 3'-end region of positive-strand RNA, not to this region of negative-strand RNA. We suggest that 3'X-PTB interaction is involved in the specific initiation of HCV genome replication. 相似文献
8.
hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome 总被引:3,自引:0,他引:3
下载免费PDF全文

Gontarek RR Gutshall LL Herold KM Tsai J Sathe GM Mao J Prescott C Del Vecchio AM 《Nucleic acids research》1999,27(6):1457-1463
Like other members of the Flaviviridae family, the 3' non-translated region (NTR) of the hepatitis C virus (HCV) is believed to function in the initiation and regulation of viral RNA replication by interacting with components of the viral replicase complex. To inves-tigate the possibility that host components may also participate in this process, we used UV cross-linking assays to determine if any cellular proteins could bind specifically to the 3'NTR RNA. We demonstrate the specific interaction of two host proteins with the extensive pyrimidine-rich region within the HCV 3'NTR. One host protein migrates as a doublet with a molecular weight of 57 kDa and is immunoreactive with antisera specific for polypyrimidine tract-binding protein (PTB), and the other protein (35 kDa) is recognized by a monoclonal antibody specific for heterogeneous nuclear ribonucleoprotein C (hnRNP C). These results suggest that recognition of the large pyrimidine-rich region by PTB and hnRNP C may play a role in the initiation and/or regulation of HCV RNA replication. 相似文献
9.
Hepatitis C virus internal ribosome entry site-dependent translation in Saccharomyces cerevisiae is independent of polypyrimidine tract-binding protein, poly(rC)-binding protein 2, and La protein
下载免费PDF全文

Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in mammalian cells, abolished translation of the second open reading frame. Internal initiation mediated by the HCV IRES was independent of the nonsense-mediated decay pathway and the cap binding protein eIF4E, indicating that translation is not a result of mRNA degradation or 5'-end-dependent initiation. Human La protein binds the HCV IRES and is required for efficient internal initiation. Disruption of the S. cerevisiae genes that encode La protein orthologs and synthesis of wild-type human La protein in yeast had no effect on HCV IRES-dependent translation. Polypyrimidine tract-binding protein (Ptb) and poly-(rC)-binding protein 2 (Pcbp2), which may be required for HCV IRES-dependent initiation in mammalian cells, are not encoded within the S. cerevisiae genome. HCV IRES-dependent translation in S. cerevisiae was independent of human Pcbp2 protein and stimulated by the presence of human Ptb protein. These findings demonstrate that the genome of S. cerevisiae encodes all proteins necessary for internal initiation of translation mediated by the HCV IRES. 相似文献
10.
Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3'' untranslated region. 总被引:14,自引:4,他引:14
下载免费PDF全文

During red blood cell differentiation, the mRNA encoding rabbit erythroid 15-lipoxygenase (LOX) is synthesized in the early stages of erythropoiesis, but is only activated for translation in peripheral reticulocytes. Erythroid LOX, which like other lipoxygenases catalyses the degradation of lipids, is unique in its ability to attack intact phospholipids and is the main factor responsible for the degradation of mitochondria during reticulocyte maturation. Strikingly, rabbit erythroid LOX mRNA has 10 tandem repeats of a slightly varied, pyrimidine-rich 19 nt motif in its 3'-untranslated region (3'-UTR). In this study we demonstrate, using gel retardation and UV-crosslinking assays, that this 3'-UTR segment specifically binds a 48 kDa reticulocyte protein. Furthermore, the interaction between the 3'-UTR LOX repeat motif and the 48 kDa protein, purified to homogeneity by specific RNA chromatography, is shown to be necessary and sufficient for specific translational repression of LOX as well as reporter mRNAs in vitro. To our knowledge this is the first case in which translation, presumably at the initiation step, is regulated by a defined protein-RNA interaction in the 3'-UTR. 相似文献
11.
Translational efficiency of a minor group of mRNAs is regulated by serum levels in 3T6 fibroblasts. Included within this group is the poly(A)-binding protein (PABP) mRNA. We analyzed the distribution of PABP mRNA in polysome profiles and found a large percentage of this mRNA to be translationally repressed in both actively growing (approximately 60%) and resting cells (approximately 70%). Elevated serum levels induced a distinct bimodal distribution of this mRNA between actively translated and repressed fractions. Similarly, treatment of cells with low doses of cycloheximide also generated a partial shift of repressed PABP mRNA into the actively translated fraction. In an attempt to characterize the factors which regulate PABP mRNA translation we have identified the proteins which bind to this mRNA in vitro. Sequences within the 5' untranslated region were found to be sufficient for binding of all proteins to this mRNA. We suggest that this region and the proteins associated with it may be essential for translation control of PABP mRNA. 相似文献
12.
Polypyrimidine tract-binding protein (PTB) has been previously shown to physically interact with the hepatitis C virus (HCV) RNA genome at its 5'- and 3'-noncoding regions. Using high affinity SELEX RNA molecules, we present evidence for the functional requirement of PTB during HCV internal ribosome entry site (IRES)-controlled translation initiation. This study was carried out in rabbit reticulocyte translation lysates in which the HCV IRES-driven reporter RNA was introduced along with the PTB-specific SELEX RNA molecules. The SELEX RNAs specifically inhibited the HCV IRES function in the context of mono- and dicistronic mRNAs. The cap-dependent translation of a reporter (chloramphenicol acetyltransferase) RNA or naturally capped brome mosaic virus RNA, however, was not affected by the presence of SELEX during in vitro translation assays. The SELEX-mediated inhibition of the HCV IRES is shown to be relieved by the addition of recombinant human PTB in an add-back experiment. The in vivo requirement of PTB was further confirmed by cotransfection of Huh7 cells with reporter RNA and PTB-specific SELEX RNA. The HCV IRES activity was inhibited by the SELEX RNA in these cells, but not by an unrelated control RNA. Together, these results demonstrate the functional requirement of cellular PTB in HCV translation and further support the feasible use of SELEX RNA strategy in demonstrating the functional relevance of cellular protein(s) in complex biological processes. 相似文献
13.
A strategy for efficient cleavage of fusion proteins using an immobilised protease has been developed. Protease 3C from coxsackie virus was recombinantly produced in Escherichia coli and covalently immobilised onto a solid support. Thereafter, Z(basic) tagged fusion proteins, with a specific cleavage sequence between the domains, were flown through the proteolytic column and circulated until complete cleavage. Subsequently, the processed protein solution was applied on a cation exchanger. Thereby, removal of the released, positively charged fusion tag, Z(basic), was done by adsorption to the matrix while the target proteins were recovered in the flow through. Interestingly, the columns were shown to be reusable without any measurable decrease in activity. Moreover, after storage in 4 degrees C for two months the activity was almost unaffected. 相似文献
14.
15.
Induction of granulocyte histaminase release by particle-bound complement C3 cleavage products (C3b, C3bi) and IgG 总被引:2,自引:0,他引:2
J Melamed R G Medicus M A Arnaout H R Colten 《Journal of immunology (Baltimore, Md. : 1950)》1983,131(1):439-444
The interaction of opsonized particles with human granulocytes promotes a number of important biologic functions, including phagocytosis, superoxide generation, and release of a variety of enzymes, including histaminase. We have previously determined that histaminase release occurs via a C3-dependent process. Although fluid-phase C3b dimers can mediate release, the relative effects of particle-bound C3b and C3bi and of IgG have not been examined. In this report we demonstrate that particle-bound C3 deposited on activators of the alternative C pathway effected histaminase release in the absence of IgG. Particle-bound C3bi and C3b were both effective as mediators of histaminase release. The extent of release varied as a function of the activating surface on which C3 was deposited (zymosan C3b was considerably more potent than C3b bound to rabbit erythrocytes, which was slightly more potent than C3b bound to neuraminidase-treated sheep erythrocytes). In contrast, C3b or C3bi deposited on nonactivating surfaces (such as sheep erythrocytes) at inputs of up to 2,000,000 molecules per granulocyte failed to induce histaminase release unless IgG was also present. The ability of C3b bound to particles that serve as activators of the alternative pathway to induce histaminase release is apparently not the result of decreased susceptibility of C3b to proteolysis or to an increased binding affinity to the C3b receptor, but may relate to the interaction of other surface structures on activating particles with the PMN membrane. 相似文献
16.
Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease
下载免费PDF全文

Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2A(pro)) or 3C protease (3C(pro)). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3C(pro) is more efficient in cleaving PABP in ribosome-enriched fractions than 2A(pro) in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3C(pro)-mediated cleavage and inhibits 2A(pro)-mediated cleavage. These results suggest that 3C(pro) plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. 相似文献
17.
18.
Activation of the beta interferon promoter by unnatural Sendai virus infection requires RIG-I and is inhibited by viral C proteins
下载免费PDF全文

Strähle L Marq JB Brini A Hausmann S Kolakofsky D Garcin D 《Journal of virology》2007,81(22):12227-12237
As infection with wild-type (wt) Sendai virus (SeV) normally activates beta interferon (IFN-beta) very poorly, two unnatural SeV infections were used to study virus-induced IFN-beta activation in mouse embryonic fibroblasts: (i) SeV-DI-H4, which is composed mostly of small, copyback defective interfering (DI) genomes and whose infection overproduces short 5'-triphosphorylated trailer RNAs (pppRNAs) and underproduces viral V and C proteins, and (ii) SeV-GFP(+/-), a coinfection that produces wt amounts of viral gene products but that also produces both green fluorescent protein (GFP) mRNA and its complement, which can form double-stranded RNA (dsRNA) with capped 5' ends. We found that (i) virus-induced signaling to IFN-beta depended predominantly on RIG-I (as opposed to mda-5) for both SeV infections, i.e., that RIG-I senses both pppRNAs and dsRNA without 5'-triphosphorylated ends, and (ii) it is the viral C protein (as opposed to V) that is primarily responsible for countering RIG-I-dependent signaling to IFN-beta. Nondefective SeV that cannot specifically express C proteins not only cannot prevent the effects of transfected poly(I-C) or (ppp)RNAs on IFN-beta activation but also synergistically enhances these effects. SeV-V(minus) infection, in contrast, behaves mostly like wt SeV and counteracts the effects of transfected poly(I-C) or (ppp)RNAs. 相似文献
19.
Translation of stable hepadnaviral mRNA cleavage fragments induced by the action of phosphorothioate-modified antisense oligodeoxynucleotides 总被引:1,自引:0,他引:1
Hasselblatt P Hockenjos B Thoma C Blum HE Offensperger WB 《Nucleic acids research》2005,33(1):114-125
Phosphorothioate-modified antisense oligodeoxynucleotides (ASOs) are used to suppress gene expression by inducing RNase H-mediated cleavage with subsequent degradation of the target mRNA. However, previous observations suggest that ASO/RNase H can also result in the generation of stable mRNA cleavage fragments and expression of truncated proteins. Here, we addressed the underlying translational mechanisms in more detail using hepadnavirus-transfected hepatoma cells as a model system of antisense therapy. Generation of stable mRNA cleavage fragments was restricted to the ASO/RNase H pathway and not observed upon cotransfection of isosequential small interfering RNA or RNase H-incompetent oligonucleotides. Furthermore, direct evidence for translation of mRNA fragments was established by polysome analysis. Polysome-associated RNA contained cleavage fragments devoid of a 5′ cap structure indicating that translation was, at least in part, cap-independent. Further analysis of the uncapped cleavage fragments revealed that their 5′ terminus and initiation codon were only separated by a few nucleotides suggesting a 5′ end-dependent mode of translation, whereas internal initiation could be ruled out. However, the efficiency of translation was moderate compared to uncleaved mRNA and amounted to 13–24% depending on the ASO used. These findings provide a rationale for understanding the translation of mRNA fragments generated by ASO/RNase H mechanistically. 相似文献
20.
Kelthane [4,4'-dichloro-alpha-(trichloromethyl)benzhydrol] was previously shown to decrease the limited tolerance of susceptible varieties of cotton (Gossypium) to Verticillium wilt. Kelthane was shown in the present study to inhibit the cell-wall p-nitrophenyl phosphatase of cotton. In view of information already establishing the cell wall as a primary site of action of Verticillium wilt, the data are interpreted as suggesting an as yet undefined interaction between Kelthane, cell-wall phosphatase and verticillium-resistance mechanisms of the cell wall. 相似文献