首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acquired hemophilia is a rare hemorrhagic disorder caused by the spontaneous appearance of inhibitory autoantibodies directed against endogenous coagulation factor VIII (FVIII). Inhibitory Abs also arise in patients with congenital hemophilia A as alloantibodies directed to therapeutic FVIII. Both autoimmune and alloimmune inhibitors neutralize FVIII by steric hindrance. We have described FVIII-hydrolyzing IgG in 50% of inhibitor-positive patients with severe hemophilia A that inactivate therapeutic FVIII. In this study, we investigated the presence of autoimmune FVIII-hydrolyzing IgG in patients with acquired hemophilia. Pooled IgG from healthy donors demonstrated moderate FVIII-hydrolyzing activity (56 +/- 26 micromol/min/mol). Purified IgG from 21 of 45 patients with acquired hemophilia demonstrated FVIII hydrolysis rates (mean 219 +/- 94 micromol/min/mol) significantly greater than that of control IgG. Three of four patients followed over the course of the disease had rates of FVIII hydrolysis that co-evolved with inhibitory titers in plasma, suggesting that IgG-mediated FVIII hydrolysis participates, in part, in FVIII inactivation. The present work extends the scope of the diseases associated with FVIII proteolysis and points toward the importance of FVIII as a key target substrate for hydrolytic immunoglobulins. Our data suggest that elevated levels of FVIII-hydrolyzing IgG in acquired hemophilia result from the exacerbation of a physiological catalytic immune response.  相似文献   

2.
In hemophilia A, routine prophylaxis with exogenous factor VIII (FVIII) requires frequent intravenous injections and can lead to the development of anti-FVIII alloantibodies (FVIII inhibitors). To overcome these drawbacks, we screened asymmetric bispecific IgG antibodies to factor IXa (FIXa) and factor X (FX), mimicking the FVIII cofactor function. Since the therapeutic potential of the lead bispecific antibody was marginal, FVIII-mimetic activity was improved by modifying its binding properties to FIXa and FX, and the pharmacokinetics was improved by engineering the charge properties of the variable region. Difficulties in manufacturing the bispecific antibody were overcome by identifying a common light chain for the anti-FIXa and anti-FX heavy chains through framework/complementarity determining region shuffling, and by pI engineering of the two heavy chains to facilitate ion exchange chromatographic purification of the bispecific antibody from the mixture of byproducts. Engineering to overcome low solubility and deamidation was also performed. The multidimensionally optimized bispecific antibody hBS910 exhibited potent FVIII-mimetic activity in human FVIII-deficient plasma, and had a half-life of 3 weeks and high subcutaneous bioavailability in cynomolgus monkeys. Importantly, the activity of hBS910 was not affected by FVIII inhibitors, while anti-hBS910 antibodies did not inhibit FVIII activity, allowing the use of hBS910 without considering the development or presence of FVIII inhibitors. Furthermore, hBS910 could be purified on a large manufacturing scale and formulated into a subcutaneously injectable liquid formulation for clinical use. These features of hBS910 enable routine prophylaxis by subcutaneous delivery at a long dosing interval without considering the development or presence of FVIII inhibitors. We expect that hBS910 (investigational drug name: ACE910) will provide significant benefit for severe hemophilia A patients.  相似文献   

3.
Factor VIII (FVIII) inhibitors are anti-FVIII IgG that arise in up to 50% of the patients with hemophilia A, upon therapeutic administration of exogenous FVIII. Factor VIII inhibitors neutralize the activity of the administered FVIII by sterically hindering its interaction with molecules of the coagulation cascade, or by forming immune complexes with FVIII and accelerating its clearance from the circulation. We have shown previously that a subset of anti-factor VIII IgG hydrolyzes FVIII. FVIII-hydrolyzing IgG are detected in over 50% of inhibitor-positive patients with severe hemophilia A, and are not found in inhibitor-negative patients. Although human proficient catalytic Abs have been described in a number of inflammatory and autoimmune disorders, their pathological relevance remains elusive. We demonstrate here that the kinetics of FVIII degradation by FVIII-hydrolyzing IgG are compatible with a pathogenic role for IgG catalysts. We also report that FVIII-hydrolyzing IgG from each patient exhibit multiple cleavage sites on FVIII and that, while the specificity of cleavage varies from one patient to another, catalytic IgG preferentially hydrolyze peptide bonds containing basic amino acids.  相似文献   

4.
Anti-factor VIII (FVIII) inhibitory IgG may arise as alloantibodies to therapeutic FVIII in patients with congenital hemophilia A, or as autoantibodies to endogenous FVIII in individuals with acquired hemophilia. We have described FVIII-hydrolyzing IgG both in hemophilia A patients with anti-FVIII IgG and in acquired hemophilia patients. Here, we compared the properties of proteolytic auto- and allo-antibodies. Rates of FVIII hydrolysis differed significantly between the two groups of antibodies. Proline-phenylalanine-arginine-methylcoumarinamide was a surrogate substrate for FVIII-hydrolyzing autoantibodies. Our data suggest that populations of proteolytic anti-FVIII IgG in acquired hemophilia patients are different from that of inhibitor-positive hemophilia A patients.  相似文献   

5.
Inhibitory antibodies directed against coagulation factor VIII (FVIII) can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins) mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.  相似文献   

6.
The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors) against factor VIII (FVIII). The current method for eradicating inhibitors, termed immune tolerance induction (ITI), is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8) gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.  相似文献   

7.
BACKGROUND: The development of anti-factor VIII (FVIII) antibodies (inhibitors) is a critical concern when considering gene therapy as a potential treatment modality for hemophilia A. We used a hemophilia A mouse model bred on different genetic backgrounds to explore genetically controlled differences in the immune response to FVIII gene therapy. METHODS: C57BL/6 FVIII knockout (C57-FVIIIKO) mice were bred with normal BALB/c (BAL) mice, to generate a recombinant congenic BAL-FVIIIKO model of hemophilia A. Early generation adenoviral (Ad) vectors containing the canine FVIII B-domain-deleted transgene under the control of either the CMV promoter or a tissue-restricted (TR) promoter were administered to C57-FVIIIKO, C57xBAL(F1)-FVIIIKO crosses, and BAL-FVIIIKO mice. FVIII expression, inhibitor development, inflammation, and vector-mediated toxicity were assessed. RESULTS: In response to administration of Ad-CMV-cFVIII, C57-FVIIIKO mice attain 3-fold higher levels of FVIII expression than BAL-FVIIIKO. All strains injected with Ad-CMV-FVIII displayed FVIII expression lasting only 2 weeks, with associated inhibitor development. C57-FVIII-KO mice that received Ad-TR-FVIII expressed FVIII for 12 months post-injection, whereas FVIII expression was limited to 1 week in C57xBAL(F1)-FVIIIKO and BAL-FVIIIKO mice. This loss of expression was associated with anti-FVIII inhibitor development. BAL-FVIIIKO mice showed increased hepatotoxicity with alanine aminotransferase levels reaching 4-fold higher levels than C57-FVIIIKO mice. However, C57-FVIIIKO mice initiate a more rapid and effective cell-mediated clearance of virally transduced cells than BAL-FVIIIKO, as evidenced by real-time PCR analysis of transduced tissues. Overall, strain-dependent differences in the immune response to FVIII gene delivery were only noted in the adaptive response, and not in the innate response. CONCLUSIONS: Our results indicate that the genetic background of the murine model of hemophilia A influences FVIII expression levels, the development of anti-FVIII inhibitors, clearance of transduced cells, and the severity of vector-mediated hepatotoxicity.  相似文献   

8.
The formation of inhibitory antibodies directed against coagulation factor VIII (FVIII) is a severe complication in the treatment of hemophilia A patients. The induction of anti-FVIII antibodies is a CD4+ T cell-dependent process. Activation of FVIII-specific CD4+ T cells is dependent on the presentation of FVIII-derived peptides on MHC class II by antigen-presenting cells. Previously, we have shown that FVIII-pulsed human monocyte-derived dendritic cells can present peptides from several FVIII domains. In this study we show that FVIII peptides are presented on immature as well as mature dendritic cells. In immature dendritic cells half of the FVIII-loaded MHC class II molecules are retained within the cell, whereas in LPS-matured dendritic cells the majority of MHC class II/peptide complexes is present on the plasma membrane. Time-course studies revealed that presentation of FVIII-derived peptides was optimal between 12 and 24 hours after maturation but persisted for at least 96 hours. We also show that macrophages are able to internalize FVIII as efficiently as dendritic cells, however FVIII was presented on MHC class II with a lower efficiency and with different epitopes compared to dendritic cells. In total, 48 FVIII core-peptides were identified using a DCs derived of 8 different donors. Five HLA-promiscuous FVIII peptide regions were found – these were presented by at least 4 out of 8 donors. The remaining 42 peptide core regions in FVIII were presented by DCs derived from a single (30 peptides) or two to three donors (12 peptides). Overall, our findings show that a broad repertoire of FVIII peptides can be presented on HLA-DR.  相似文献   

9.
10.
Inefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking.  相似文献   

11.
Hemophilia A is a recessive X-linked hereditary disease, so its manifestation in women is extremely rare and can be a result of an asymmetric X-chromosome inactivation or, even more rarely, of a presence of mutations in both FVIII gene alleles. We conducted a mutation screening of the FVIII gene in two female patients with clinical hemophilia A manifestation in this study. One patient had a hereditary disease; the second one was diagnosed with acquired hemophilia A as an adult. Both patients carried the same missense mutation His2026Arg. The patient with the hereditary form of the disease also had previously known microinsertion c.4379_4380 insA (p.Asn1460Lys-fs*1). We found no additional aberrations by sequencing of all functionally significant parts of the factor VIII gene of the patient with acquired hemophilia but showed clear asymmetric inactivation of X-chromosomes. Therefore, one of the possible explanations for the emergence of the hemophilic syndrome in this case can be the delayed manifestation of the FVIII gene germline mutation owing to the enhancement of hematopoiesis clonality with age.  相似文献   

12.
Hemophilia A, a life-threatening bleeding disorder, is caused by deficiency of factor VIII (FVIII). Replacement therapy using rFVIII is the first line therapy for hemophilia A. However, 15-30% of patients develop neutralizing antibody, mainly against the C2, A3 and A2 domains. It has been reported that PS-FVIII complex reduced total and neutralizing anti-rFVIII antibody titers in hemophilia A murine models. Here, we developed FVIII-containing cochleate cylinders, utilizing PS-Ca(2+) interactions and characterized these particles for optimal in vivo properties using biophysical and biochemical techniques. Approximately 75% of the protein was associated with cochleate cylinders. Sandwich ELISA, acrylamide quenching and enzymatic digestion studies established that rFVIII was shielded from the bulk aqueous phase by the lipidic structures, possibly leading to improved in vivo stability. Freeze-thawing and rate-limiting diffusion studies revealed that small cochleate cylinders with a particle size of 500 nm or less could be generated. The release kinetics and in vivo experiments suggested that there is slow and sustained release of FVIII from the complex upon systemic exposure. In vivo studies using tail clip method indicated that FVIII-cochleate complex is effective and protects hemophilic mice from bleeding. Based on these studies, we speculate that the molecular interaction between FVIII and PS may provide a basis for the design of novel FVIII lipidic structures for delivery applications.  相似文献   

13.
Hemophilia A is an X-linked congenital bleeding disorder caused by Factor VIII deficiency. Different mutations including point mutations, deletions, insertions and inversions have been reported in the FVIII gene, which cause hemophilia A. In the current study, with the use of conformational sensitive gel electrophoresis (CSGE) analysis, we report a novel 1-nt deletion in the A6 sequence at codons 1328-1330 (4040-4045 nt delA) occurring in exon 14 of the FVIII gene in a seven-year-old Iranian boy with severe hemophilia A. This mutation that causes frameshift and premature stop-codon at 1331 has not previously been reported in the F8 Hemophilia A Mutation, Structure, Test and Resource Site (HAMSTeRS) database.  相似文献   

14.
Haemophilia A and B are caused by various mutations in the factor VIII (FVIII) and factor IX (FIX) genes, respectively. The clinical course of the disease is variable, dependent on the severity of the molecular defect. Nowadays, haemophilia patients can excellently be treated by plasma-derived or recombinant clotting factor concentrates. Thus, bleeding and its consequences can be almost completely prevented with nearly normal quality of life and life expectancy. The most severe complication of this treatment is the formation of antibodies (inhibitors) against the substituted clotting factor. The risk of inhibitor formation correlates significantly with specific mutation types that preclude endogenous factor VIII/IX protein synthesis and can be as high as 20–50%. The information on the expected clinical course is at present the most important indication for FVIII/IX gene analysis. Knowledge of the underlying FVIII/IX gene mutation further allows a reliable and fast carrier diagnosis in female relatives of patients with haemophilia.  相似文献   

15.
16.
ABSTRACT: INTRODUCTION: Hemophilia A is an X linked recessive hemorrhagic disorder caused by mutations in the F8 gene that lead to qualitative and/or quantitative deficiencies of coagulation factor VIII (FVIII). Molecular diagnosis of hemophilia A is challenging because of the high number of different causative mutations that are distributed throughout the large F8 gene. Molecular studies of these mutations are essential in order to reinforce our understanding of their pathogenic effect responsible for the disorder. Aim In this study we have performed molecular analysis of 28 Tunisian hemophilia A patients and analyzed the F8 mutation spectrum. METHODS: We screened the presence of intron 22 and intron 1 inversion in severe hemophilia A patients by southern blotting and polymerase chain reaction (PCR). Detection of point mutations was performed by dHPLC/sequencing of the coding F8 gene region. We predict the potential functional consequences of novel missense mutations with bioinformatics approaches and mapping of their spatial positions on the available FVIII 3D structure. RESULTS: We identified 23 different mutations in 28 Tunisian hemophilia A patients belonging to 22 unrelated families. The identified mutations included 5 intron 22 inversions, 7 insertions, 4 deletions and 7 substitutions. In total 18 point mutations were identified, of which 9 are located in exon 14, the most mutated exonic sequence in the F8 gene. Among the 23 mutations, 8 are novel and not deposited in the HAMSTeRS database nor described in recently published articles. CONCLUSION: The mutation spectrum of Tunisian hemophilia A patients is heterogeneous with the presence of some characteristic features. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1693269827490715.  相似文献   

17.
The A2 domain rapidly dissociates from activated factor VIII (FVIIIa) resulting in a dampening of the activity of the activated factor X-generating complex. The amino acid residues that affect A2 domain dissociation are therefore critical for FVIII cofactor function. We have now employed chemical footprinting in conjunction with mass spectrometry to identify lysine residues that contribute to the stability of activated FVIII. We hypothesized that lysine residues, which are buried in FVIII and surface-exposed in dissociated activated FVIII (dis-FVIIIa), may contribute to interdomain interactions. Mass spectrometry analysis revealed that residues Lys(1967) and Lys(1968) of region Thr(1964)-Tyr(1971) are buried in FVIII and exposed to the surface in dis-FVIIIa. This result, combined with the observation that the FVIII variant K1967I is associated with hemophilia A, suggests that these residues contribute to the stability of activated FVIII. Kinetic analysis revealed that the FVIII variants K1967A and K1967I exhibit an almost normal cofactor activity. However, these variants also showed an increased loss in cofactor activity over time compared with that of FVIII WT. Remarkably, the cofactor activity of a K1968A variant was enhanced and sustained for a prolonged time relative to that of FVIII WT. Surface plasmon resonance analysis demonstrated that A2 domain dissociation from activated FVIII was reduced for K1968A and enhanced for K1967A. In conclusion, mass spectrometry analysis combined with site-directed mutagenesis studies revealed that the lysine couple Lys(1967)-Lys(1968) within region Thr(1964)-Tyr(1971) has an opposite contribution to the stability of FVIIIa.  相似文献   

18.
Factor VIII (FVIII) is the blood coagulation protein which when defective or deficient causes for hemophilia A, a severe hereditary bleeding disorder. Activated FVIII (FVIIIa) is the cofactor to the serine protease factor IXa (FIXa) within the membrane‐bound Tenase complex, responsible for amplifying its proteolytic activity more than 100,000 times, necessary for normal clot formation. FVIII is composed of two noncovalently linked peptide chains: a light chain (LC) holding the membrane interaction sites and a heavy chain (HC) holding the main FIXa interaction sites. The interplay between the light and heavy chains (HCs) in the membrane‐bound state is critical for the biological efficiency of FVIII. Here, we present our cryo‐electron microscopy (EM) and structure analysis studies of human FVIII‐LC, when helically assembled onto negatively charged single lipid bilayer nanotubes. The resolved FVIII‐LC membrane‐bound structure supports aspects of our previously proposed FVIII structure from membrane‐bound two‐dimensional (2D) crystals, such as only the C2 domain interacts directly with the membrane. The LC is oriented differently in the FVIII membrane‐bound helical and 2D crystal structures based on EM data, and the existing X‐ray structures. This flexibility of the FVIII‐LC domain organization in different states is discussed in the light of the FVIIIa–FIXa complex assembly and function. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 448–459, 2013.  相似文献   

19.

Background

Point mutations resulting in reduced factor VIII (FVIII) binding to von Willebrand factor (VWF) are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood.

Methodology/Principal Findings

We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser) to severe (Tyr1680Phe, Ser2119Tyr) VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH.

Conclusions

Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.  相似文献   

20.
Viral vectors have been used for hemophilia A gene therapy. However, due to its large size, full-length Factor VIII (FVIII) cDNA has not been successfully delivered using conventional viral vectors. Moreover, viral vectors may pose safety risks, e.g., adverse immunological reactions or virus-mediated cytotoxicity. Here, we took advantages of the non-viral vector gene delivery system based on piggyBac DNA transposon to transfer the full-length FVIII cDNA, for the purpose of treating hemophilia A. We tested the efficiency of this new vector system in human 293T cells and iPS cells, and confirmed the expression of the full-length FVIII in culture media using activity-sensitive coagulation assays. Hydrodynamic injection of the piggyBac vectors into hemophilia A mice temporally treated with an immunosuppressant resulted in stable production of circulating FVIII for over 300 days without development of anti-FVIII antibodies. Furthermore, tail-clip assay revealed significant improvement of blood coagulation time in the treated mice.piggyBac transposon vectors can facilitate the long-term expression of therapeutic transgenes in vitro and in vivo. This novel gene transfer strategy should provide safe and efficient delivery of FVIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号