首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact forces during landing in dismounts from the horizontal bar onto regulation gymnastic mats and in jumping from a height of 0.45 m onto a hard surface were measured. A two degree-of-freedom dynamic model was developed to predict the forces in landing on the hard surface. The periods of the two peaks that can be identified from experimental data were used in the determination of the system parameters. The peak forces recorded in gymnasts' landing ranged from 8.2 to 11.6 times the body weight. Maximum forces in jumping from 0.45 m, which ranged from 5.0 to 7.0 times the body weight, were accurately predicted by the model.  相似文献   

2.
Soft tissue artefact (STA) and marker placement variability are sources of error when measuring the intrinsic kinematics of the foot. This study aims to demonstrate a non-invasive, combined ultrasound and motion capture (US/MC) technique to directly measure foot skeletal motion. The novel approach is compared to a standard motion capture protocol. Fourteen participants underwent instrumented barefoot analysis of foot motion during gait. Markers were attached to foot allowing medial longitudinal arch angle and navicular height to be determined. For the US/MC technique, the navicular marker was replaced by an ultrasound transducer which was secured to the foot allowing the skeletal landmark to be imaged. Ultrasound cineloops showing the location of the navicular tuberosity during the walking trials were synchronised with motion capture measurements and markers mounted on the probe allowed the true position of the bony landmark to be determined throughout stance phase. Two discrete variables, minimum navicular height and maximum MLA angle, were compared between the standard and US/MC protocols. Significant differences between minimum navicular height (P=0.004, 95% CI (1.57, 6.54)) and maximum medial longitudinal arch angle (P=0.0034, 95% CI (13.8, 3.4)) were found between the measurement methods. The individual effects of STA and marker placement error were also assessed. US/MC is a non-invasive technique which may help to provide more accurate measurements of intrinsic foot kinematics.  相似文献   

3.
【目的】为在室内防止捕食螨逃逸,设计一种防止逃逸行为的饲养观察装置。【方法】对比研究了传统隔水式饲养装置和改进型装置在防止逃逸行为中的效果,及改进型装置对捕食螨发育及繁殖能力有无影响。【结果】改进型装置通过添加瓶塞、棉线、盖玻片组成密闭小室,可有效防止捕食螨的逃逸,逃逸率仅为3.3%。另外,使用该装置后的捕食螨生长发育及繁殖等能力与隔水式饲养法相比未受到显著影响。【结论】本文设计的饲养观察装置可在捕食螨生物学、生态学及农药抗性等基础研究中应用。  相似文献   

4.
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart’s, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies.  相似文献   

5.
6.
This report describes a new method allowing to measure the three-dimensional forces applied on right and left pedals during cycling. This method is based on a cycle ergometer mounted on a force platform. By recording the forces applied on the force platform and applying the fundamental mechanical equations, it was possible to calculate the instantaneous three-dimensional forces applied on pedals. It was validated by static and dynamic tests. The accuracy of the present system was -7.61 N, -3.37 N and -2.81 N, respectively, for the vertical, the horizontal and the lateral direction when applying a mono-directional force and -4.52 N when applying combined forces. In pedaling condition, the orientation and magnitude of the pedal forces were comparable to the literature. Moreover, this method did not modify the mechanical properties of the pedals and offered the possibility for pedal force measurement with materials often accessible in laboratories. Measurements obtained showed that this method has an interesting potential for biomechanical analyses in cycling.  相似文献   

7.
The purpose of this study was to determine the long-time and transient characteristics of the moment generated by external (ER) and internal (IR) rotation of the calcaneus with respect to the tibia. Two human cadaver legs were disarticulated at the knee joint while maintaining the connective tissue between the tibia and fibula. An axial rotation of 21° was applied to the proximal tibia to generate either ER or IR while the fibula was unconstrained and the calcaneus was permitted to translate in the transverse plane. These boundary conditions were intended to allow natural motion of the fibula and for the effective applied axis of rotation to move relative to the ankle and subtalar joints based on natural articular motions among the tibia, fibula, talus, and calcaneus. A load cell at the proximal tibia measured all components of force and moment. A quasi-linear model of the moment along the tibia axis was developed to determine the transient and long-time loads generated by this ER/IR. Initially neutral, everted, inverted, dorsiflexed, and plantarflexed foot orientations were tested. For the neutral position, the transient elastic moment was 16.5 N-m for one specimen and 30.3 N-m for the other in ER with 26.3 and 32.1 N-m in IR. The long-time moments were 5.5 and 13.2 N-m (ER) and 9.0 and 9.5 N-m (IR). These loads were found to be transient over time similar to previous studies on other biological structures where the moment relaxed as time progressed after the initial ramp in rotation.  相似文献   

8.
The ratio of the power arm (the distance from the heel to the talocrural joint) to the load arm (that from the talocrural joint to the distal head of the metatarsals), or RPL, differs markedly between the human and ape foot. The arches are relatively higher in the human foot in comparison with those in apes. This study evaluates the effect of these two differences on biomechanical effectiveness during bipedal standing, estimating the forces acting across the talocrural and tarsometatarsal joints, and attempts to identify which type of foot is optimal for bipedal standing. A simple model of the foot musculoskeletal system was built to represent the geometric and force relationships in the foot during bipedal standing, and measurements for a variety of human and ape feet applied. The results show that: (1) an RPL of around 40% (as is the case in the human foot) minimizes required muscle force at the talocrural joint; (2) the presence of an high arch in the human foot reduces forces in the plantar musculature and aponeurosis; and (3) the human foot has a lower total of force in joints and muscles than do the ape feet. These results indicate that the proportions of the human foot, and the height of the medial arch are indeed better optimized for bipedal standing than those of apes, further suggesting that their current state is to some extent the product of positive selection for enhanced bipedal standing during the evolution of the foot.  相似文献   

9.
There is a need to align the mechanical axis of the tibia with the axis of loading for studies involving tibiofemoral compression to interpret results and to ensure repeatability of loading within and among specimens. Therefore, the objectives of this study were (1) to develop a magnetic resonance imaging (MRI)-based alignment method for use with apparatuses applying tibiofemoral joint compression, (2) to demonstrate the usefulness of the method by aligning cadaveric knees in an apparatus that could apply tibiofemoral joint compression, and (3) to quantify the error associated with the alignment method. A four degree-of-freedom adjustable device was constructed to allow determination and alignment of the mechanical axis of the tibia of cadaveric knee joints with the axis of loading of an apparatus applying tibiofemoral joint compression. MRI was used to determine the locations of bony landmarks in three dimensions defining the mechanical axis of the tibia relative to an initial orientation of the four degree-of-freedom device. Adjustment values of the device were then computed and applied to the device to align the mechanical axis of the tibia with the axis of a compressive loading apparatus. To demonstrate the usefulness of the method, four cadaveric knees were aligned in the compressive loading apparatus. The vectors describing the mechanical axis of the tibia and the loading axis of the apparatus before and after adjustment of the four degree-of-freedom device were computed for each cadaveric knee. After adjustment of the four degree-of-freedom device, the mechanical axis of the tibia was collinear with the loading axis of the apparatus for each cadaveric knee. The errors in the adjustment values introduced by inaccuracies in the MR images were quantified using the Monte Carlo technique. The precisions in the translational and rotational adjustments were 1.20 mm and 0.90 deg respectively. The MR-based alignment method will allow consistent interpretation of results obtained during tibiofemoral compressive studies conducted using the apparatus described in this paper by providing a well-defined loading axis. The alignment method can also be adapted for use with other apparatuses applying tibiofemoral compression.  相似文献   

10.
This report describes new treadmill ergometer designed to measure the vertical and horizontal ground reaction forces produced by the left and right legs during walking. It was validated by static and dynamic tests. Non-linearity was from 0.2% (left vertical force) to 1.4% (right antero-posterior force). The resonance frequency was from 219 (right vertical direction) to 58 Hz (left medio-lateral direction). A calibration "leg", an air jack in series with a strain gauge, was developed and used to produce force signals comparable to those obtained during human locomotion. The mean differences between the force measured by the calibration leg and treadmill ergometer at 5 km h(-1) were 3.7 N (0.7%) for the left side and 6.5 N (1.2%) for the right. Measurements obtained during human walking showed that the treadmill ergometer has considerable potential for analysing human gait.  相似文献   

11.
Ultrasound is a popular and affordable imaging modality, but the nature of freehand ultrasound operation leads to unknown applied loads at non-quantifiable angles. The purpose of this paper was to demonstrate an instrumentation strategy for an ultrasound system to measure probe forces and orientation during freehand imaging to characterize the interaction between the probe and soft-tissue as well as enhance repeatability. The instrumentation included a 6-axis load cell, an inertial measurement unit, and an optional sensor for camera-based motion capture. A known method for compensation of the ultrasound probe weight was implemented, and a novel method for temporal synchronization was developed. While load and optical sensing was previously achieved, this paper presents a strategy for potential instrumentation on a variety of ultrasound machines. A key feature was the temporal synchronization, utilizing the electrocardiogram (EKG) feature built-in to the ultrasound. The system was used to perform anatomical imaging of tissue layers of musculoskeletal extremities and imaging during indentation on an in vivo subject and an in vitro specimen. The outcomes of the instrumentation strategy were demonstrated during minimal force and indentation imaging. In short, the system presented robust instrumentation of an existing ultrasound system to fully characterize the probe force, orientation, and optionally its movement during imaging while efficiently synchronizing all data. Researchers may use the instrumentation strategy on any EKG capable ultrasound systems if mechanical characterization of soft tissue or minimization of forces and deformations of tissue during anatomical imaging are desired.  相似文献   

12.
Locomotion over ballast surfaces provides a unique situation for investigating the biomechanics of gait. Although much research has focused on level and sloped walking on a smooth, firm surface in order to understand the common kinematic and kinetic variables associated with human locomotion, the literature currently provides few if any discussions regarding the dynamics of locomotion on surfaces that are either rocky or uneven. The purpose of this study was to investigate a method for using force plates to measure the ground reaction forces (GRFs) during gait on ballast. Ballast is a construction aggregate of unsymmetrical rock used in industry for the purpose of forming track bed on which railway ties are laid or in yards where railroad cars are stored. It is used to facilitate the drainage of water and to create even running surfaces. To construct the experimental ballast surfaces, 31.75 mm (1 1/4 in.) marble ballast at depths of approximately 63.5 mm (2.5 in.) or 101.6 mm (4 in.) were spread over a carpeted vinyl tile walkway specially designed for gait studies. GRF magnitudes and time histories from a force plate were collected under normal smooth surface and under both ballast surface conditions for five subjects. GRF magnitudes and time histories during smooth surface walking were similar to GRF magnitudes and time histories from the two ballast surface conditions. The data presented here demonstrate the feasibility of using a force plate system to expand the scope of biomechanical analyses of locomotion on ballast surfaces.  相似文献   

13.
14.
Joint forces in the human pelvis-leg skeleton during walking   总被引:1,自引:0,他引:1  
For the calculation of the forces in the hip, knee and ankle joints during walking the knowledge of the three-dimensional movements of the human body and of the forces between foot and ground is a prerequisite. It is shown how this information may be obtained and what accuracy is obtainable. For the calculation of the statically indeterminate system of the lower limbs, consisting of muscles, bones and joints an optimization method is applied. The optimization criterion is the minimization of the muscle forces. Measurements were taken with seventeen male and five female persons. The maximum joint forces are plotted against gait speed, body weight and body size. In addition some statistical distributions are presented.  相似文献   

15.
In the analysis of hand functions, the production and control of forces exerted during voluntary contraction of the finger muscles plays an important role; unfortunately such an analysis is rarely seen in routine clinical examinations of neurological patients. A microcomputer controlled system for the measurement and analysis of finger forces is described. The system consists of a modified Z80 based microcomputer, a commercially available high precision force transducer, a specially designed force signal amplifier and a suite of menu-driven user interactive programs. A variety of tasks is implemented by means of the computer programs. In addition to the measurement of maximum hand grip force, the system is able to record forces continuously as a function of time. Task characteristics and the type of feedback presented to the subject are under user control; they can be varied to meet clinical or experimental requirements. Examples of programs and clinical applications are presented and discussed.  相似文献   

16.
17.
Rosette strain gages indicate shear and principal strains at specific points, whereas photoelastic coatings provide shear strain information over a broad area. Information regarding bone loading and load transfer from a prosthetic implant to adjacent bone can be obtained using either strain-measuring technique on loaded femora. This study compared proximal femoral strains derived from photoelastic coatings to those obtained from rosette strain gages applied directly to the bone in order to determine the relationships between photoelastic shear strains and rosette shear and principal strains. Photoelastic shear strains underestimated rosette shear strains and exceeded the larger of the rosette principal strains. Principal strains derived from photoelastic coatings augmented with strain separator gages underestimated their rosette counterparts in most instances. Correlation was strong and nearly linear for all measures, indicating that photoelastic coatings can accurately express proportional strain changes despite imperfect agreement in absolute strain magnitudes. The best agreement between absolute strain magnitudes occurred in the proximal medial, or calcar, region. Understanding the relationships between the various measures obtained using the two strain measurement methods will allow more accurate estimates of actual strains to be made from photoelastic coatings.  相似文献   

18.
19.
Knowledge of the interaction of forces between persons and the bed in which they lie or the seat on which they are sitting, provides an insight into the loading of their muscles, bones and soft tissue. To determine the total forces on the body-supporting surfaces (backrest, seat pan, foot rest) resolved in components perpendicular and parallel to these surfaces a new instrument has been developed, with which the forces perpendicular and parallel to three different freely adjustable body-supporting surfaces can be registered. During the first measurements the forces on a bed were measured when a person sits in a bed with the backrest at an angle of 45° to the horizontal and the mattress horizontal. The measurements on a healthy population (mean mass = 77 kg, sd = 11 kg) showed an accuracy of ± 10 N. In this position the mean shear force on the seat pan was 97 N.  相似文献   

20.
For the design of bioconversion processes parallel experimentation in microtiter plates is commonly applied to reduce the experimental load, although data accuracy and reproducibility are often reduced. In an effort to quantify the impact of different microscale experimental systems on the estimation of enzyme kinetic parameters from progress curves, we comprehensively evaluated the enzymatic reduction of acetophenone in both open and closed polystyrene and quartz microtiter plates as well as quartz cuvettes. Differences in conversion of up to 50% over time were observed increasing from polystyrene MTPs to quartz MTPs to quartz cuvettes. Initial reaction velocities increased systematically from polystyrene to quartz MTPs and cuvettes. The experimental errors decreased in the same order showing highest experimental error of about 20% in polystyrene. We further evaluated reasons causing the deviations within one system as well as between the systems. The choice of reaction vessel material, temperature effects and substrate cross contaminations in MTPs were shown to be of importance in the experimental results. Although the experimental data differed between the reaction vessels, no distinct trends in estimated kinetic parameters were found. While the microkinetic parameters vary up to an order of magnitude between different systems, the corresponding macrokinetic parameters lie in the same range for all systems varying by 29–118%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:87–95, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号