首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Summary The effect of short time heating of aqueous solutions of glutaraldehyde (GA) on relative aldehyde concentration was determined using spectrophotometric analysis. Because free monomeric GA absorbs U. V. light at 280 nm, whereas the alpha, beta polymeric forms absorb at 235 nm, the purity of GA solutions can be expressed as the ratio: A 235 nm/A 280 nm (purification index, P.I.).Heating of 4 ml aliquots of 0.85% distilled aqueous GA solution resulted in an increase of the absorption at 280 nm which is correlated positively with temperature. No increase of absorption at 235 nm was found when solutions were kept at 40°C for several hours. The increase of absorption at 280 nm is caused by a rapid decyclization of hemiacetals producing an increase in free aldehyde concentration.No major differences in absorption were found between the solutions heated by microwave and by conventional heating. However, because microwave irradiation is known to produce an homogeneous rise in temperature, especially in bulky samples, it is expected that the results of fixation procedures will improve by the combined effect of higher temperature and enhanced diffusion rates of the fixating species.  相似文献   

2.
Glutaraldehyde: nature of the reagent   总被引:12,自引:0,他引:12  
Aqueous solutions of glutaraldehyde used for the chemical modification and stabilization of proteins have been found to consist of free glutaraldehyde (I), the cyclic hemiacetal of its hydrate (II) and oligomers of this (III) in equilibrium with each other. Ultraviolet absorption spectra of these solutions at wavelengths greater than 200 nm should have only a single maximum at 280 nm. Absorption at 235 nm is due to an impurity which can be removed by various means. Reactions of the reagent with proteins involve principally the lysinyl (and hydroxylysinyl) residues in the relative amounts of four moles of glutaraldehyde to one of lysine. Three unstable products can be partially isolated from acid hydrolyzates of glutaraldehyde-treated proteins or from the reaction mixtures of glutaraldehyde and model compounds; two of these products have strong ultraviolet absorption near 265 nm.  相似文献   

3.
N-Acetyl-L-phenylalaninal exists predominantly in its hydrated form in aqueous solution, but the aldehyde and not the hydrate is shown by nuclear magnetic resonance (NMR) spectroscopy to be the effective inhibitor of alpha-chymotrypsin. NMR spectroscopy also indicates that the initial alpha-chymotrypsin-N-acetyl-L-phenylalaninal complex is in equilibrium with a hemiacetal formed between the aldehyde and the active site serine residue. The rate of the latter equilibration is slow on the NMR time scale but the hemiacetal can be detected by cross-saturation NMR spectroscopy. N-Benzoyl-L-phenylalaninal is a more potent inhibitor of alpha-chymotrypsin than the N-acetyl derivative and both the formation of the enzyme-inhibitor complex and the hemiacetal are slow on the NMR time scale, but the hemiacetal in the enzyme can be detected by cross-saturation NMR spectroscopy. The N-acyl-L-phenylalaninals also bind to N-methylhistidinyl-57-alpha-chymotrypsin, but clear evidence for hemiacetal formation was not obtained by cross-saturation NMR spectroscopy either because the hemiacetal was not formed or more probably because the rate of dissociation was slow compared with the rate of relaxation of the hemiacetal proton. The dissociation constant of N-benzoyl-L-phenylalaninal to dehydroalaninyl-195-alpha-chymotrypsin was found to be high relative to the dissociation constant to native alpha-chymotrypsin, supporting the NMR evidence that a hemiacetal with the Ser-195 is formed on association of N-benzoyl-L-phenylalaninal with alpha-chymotrypsin.  相似文献   

4.
Our objective in this study was to evaluate the relative amount of smooth muscle cells in the medial layer of various rabbit arteries. The fixation of smooth muscle cells in the arterial wall is difficult and the differential effect of glutaraldehyde (GA) and fixative vehicle on cell ultrastructure in different tissues is controversial. We compared the effect of various concentrations of the vehicle and glutaraldehyde (osmolarity ranges for total fixative, 350-1030 mOsm) on the arterial wall ultrastructure. We found that a 600 mOsm GA solution (isotonic vehicle; 2.5% GA) adequately preserves arterial wall structures. The relative amount of smooth muscle cells in the media differed in various segments along the arterial tree. It ranged from 35% (thoracic aorta) to 74% (tibial artery). The importance of weighting the contractile response of different arteries in vitro to their relative smooth muscle cell content is discussed.  相似文献   

5.
It was shown that during conservation of heart valve xenograft bioprostheses, with glutaraldehyde (GA) the reagent penetrated the tissue from a 0.625% solution in a greater amount than from 0.25 and 1% solutions. The treatment with a 0.625% solution of GA essentially decreased the sensitizing and anaphylactic activity of the prosthetic tissue and contributed to the tissue inertness in radial immunodiffusion with antiserum of immunized animals. Subsequent treatment of the tissue with a 4% GA promoted a further decrease of immunogenic properties of the xenogeneic tissue. GA conservation increased durability and limited pliability, which led to a mild stenotic effect revealed during prosthesis functioning in vitro. The optimal method of the conservation of the aortal bioprosthesis consists in its 4-week treatment with 0.625% GA and a three-fold change of the solutions followed by storage of the tissue in 4% formaldehyde.  相似文献   

6.
Interactions of glutaraldehyde with either n-butylamine, poly(α,L -lysine), or collagen resulted in a fast release of protons in dilute aqueous solutions at various pH values, followed by much slower changes. The latter reactions, which extended over hours and days, were followed spectrophotometrically and revealed the formation of distinct absorption bands in the visible and near-ultraviolet regions in all the above systems. The visible-range bands disappeared upon treatment with sodium borohydride. A qualitative relationship between oxygen uptake by the system n-butylamine–glutaraldehyde and the slow formation of colored products has been established, while the chemical nature of the reaction products has not been determined. Sedimentation velocity, viscosity, and optical rotation measurements on the products of interaction between poly(L -lysine) and glutaraldehyde in aqueous solution indicated large conformational changes in the polyamino acid present in excess (in residues) over the dialdehyde. In particular, the intrinsic viscosity dropped considerably after interaction, indicating intramolecular crosslinking. At molar ratios of 1:1 between polylsine residues and aldehyde groups, intermolecular crosslinking of polylysine was obtained at pH 8.6. Electron microscopic examinations of collagen samples treated by glutaraldehyde at various pH values indicated changes from unordered to more ordered structures upon treatment with glutaraldehyde, in particular at pH 10. The present structural and optical investigations are considered to be relevant to tanning processes of hides and to fixation procedures.  相似文献   

7.
The interaction between poly(α,L -lysine) (DP = 180) and glutaraldehyde was investigated in dilute aqueous solution by measurement of the kinetics of proton release at constant pH and temperature and at various concentrations of the reaction components. Under various conditions, the release of protons at constant pH appeared kinetically to be composed of at least two steps: an initial zero-order reaction, followed by a slower reaction. At excess of polylysine amino groups, the pH optimum for the rates of reaction was at pH 9–10 (24–25°C). Under the conditions used and at pH 8, the initial rate of the second kinetic step was proportional to the glutaraldehyde concentration and was practically independent of polylysine concentration at pH 8 and 8.6, at an excess of amino groups. At pH values of 7, 8, and 8.6 the apparent overall energy of activation for the second kinetic step was 18–19 kcal/mole (temp. range 4–40°C). Comparing acetaldehyde with the difunctional glutaraldehyde, it was found that the rate of proton release was much smaller in the case of acetaldehyde. Comparing n-butylamine with the macromolecular polylysine at equal concentrations of amino groups, the rates of proton release were much smaller in the case of n-butylamine. Collagen in aqueous medium also interacted with glutaraldehyde in a manner analogous to polylysine, although the conditions were not quite comparable. In the case of collagen, the initial fast proton liberation step was relatively much larger than in the case of polylysine. A reaction scheme for the initial reaction steps is being proposed which includes primary complex formation between glutaraldehyde and polylysine. This dialdehyde–polyamino acid system is considered to serve as a model for tanning processes of hides and for fixation procedures.  相似文献   

8.
Glutaraldehyde possesses unique characteristics that render it one of the most effective protein crosslinking reagents. It can be present in at least 13 different forms depending on solution conditions such as pH, concentration, temperature, etc. Substantial literature is found concerning the use of glutaraldehyde for protein immobilization, yet there is no agreement about the main reactive species that participates in the crosslinking process because monomeric and polymeric forms are in equilibrium. Glutaraldehyde may react with proteins by several means such as aldol condensation or Michael-type addition, and we show here 8 different reactions for various aqueous forms of this reagent. As a result of these discrepancies and the unique characteristics of each enzyme, crosslinking procedures using glutaraldehyde are largely developed through empirical observation. The choice of the enzyme-glutaraldehyde ratio, as well as their final concentration, is critical because insolubilization of the enzyme must result in minimal distortion of its structure in order to retain catalytic activity. The purpose of this paper is to give an overview of glutaraldehyde as a crosslinking reagent by describing its structure and chemical properties in aqueous solution in an attempt to explain its high reactivity toward proteins, particularly as applied to the production of insoluble enzymes.  相似文献   

9.
In phase-partition fixation, tissue is immersed in a non-aqueous solvent at equilibrium with an aqueous solution of a fixing agent to minimize osmotic effects. Preservation of morphology afforded by phase-partition fixation using formalin and glutaraldehyde and several organic solvents was compared to aqueous 10% neutral buffered formalin fixation for five tissues. It was shown that phase-partition fixation can provide excellent fixation for light microscopy if the proper combinations of fixatives and solvents are used.  相似文献   

10.
Cyanide condenses with aldoses at 25° in aqueous solution between pH 7.0–9.0 to produce aldononitriles in high yield. These nitriles may be reduced catalytically over palladium-barium sulfate (5%) at pH 4.2 ± 0.1 and 25° to yield the corresponding aldoses in 60–90% yield, depending on the structure of the nitrile. 1-Amino-1-deoxyalditols are produced in approximately 10% yield, and their formation is favored when hemiacetal formation is hindered in the parent aldose. Generally, the product epimeric aldoses can be separated from contaminating by-products and from each other by ion-exchange and adsorption chromatography. This procedure has been applied to the preparation of [1-13C]-enriched pentoses and hexoses.  相似文献   

11.
J P Yee  H C Mel 《Blood cells》1978,4(3):485-497
Red blood cells interact with glutaraldehyde (GA) in a complex kinetic pattern of events. At a given GA concentration in phosphate buffered saline (PBS), the sequence of cell 'volume' response, as measured by resistive pulse spectroscopy (RPS), includes: an immediate response to the overall solution osmolality; a constant volume, latent phase; a rapid swelling phase; an intermediate constant volume phase; and a shrinkage phase to a final steady state volume. The final volume depends on fixative solution osmolality; for GA concentrations between 0.05% and 0.25% w/v, fixative osmolalities of less than 355 mosM, including 'isotonic', or greater than 355 mosM, lead to final cell volumes greater or less than native, respectively. Cell-membrane deformability decreases continuously and monotonically with time, as assessed by RPS. The rate of fixation is a direct function of GA concentration, in accordance with a derived empirical expression. The measured kinetic responses are related to considerations of cell size, deformability, and form, and to mechanisms involved in abrupt osmotic hemolysis.  相似文献   

12.
Tian Y  He Q  Cui Y  Li J 《Biomacromolecules》2006,7(9):2539-2542
Nanotubes of cytochrome C (cyto-c) with glutaraldehyde (GA) or PSS based on the layer-by-layer (LbL) assembly through covalent binding and electrostatic adsorption have been fabricated. The combination of the template method and the LbL method for fabrication of nanotubes exhibits low cost, simplicity, and versatility. The tubular morphology of the assembled glutaraldehyde and cytochrome C film was demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements.The components of the tubes were determined by energy-dispersive X- ray spectra (EDAX). It is found that the assembled tubes keep the proteins' biochemical activity and electronic activity by cyclic voltammograms. The measurements of ultraviolet spectra and circular dichroism (CD) on the assembled nanotubes confirmed the cyto-c existence in the tubes.  相似文献   

13.
To assess whether alcohol and glutaraldehyde are effective disinfectants against dried HIV the virucidal effects of 70% alcohol (ethanol and industrial methylated spirit) and 1% and 2% alkaline glutaraldehyde were tested against cell associated and cell free HIV dried on to a surface. Virus stock (100 microliters) or 10,000 cultured C8166 T lymphocytes infected with HIV were dried onto sterile coverslips and immersed in 2% and 1% alkaline glutaraldehyde and 70% ethanol for 30 seconds and one, two, four, and 10 minutes, there being an additional time point of 20 minutes for cell free virus disinfected with 70% industrial methylated spirit. In addition, virus stock in neat serum was tested with 1% and 2% alkaline glutaraldehyde to see whether the fixative properties of glutaraldehyde impair its virucidal properties. Virus activity after disinfection was tested by incubating the coverslips (cell associated virus) or the coverslips and sonicated cell free virus with C8166 T lymphocytes. The lymphocytes were examined for the formation of syncytia and HIV antigens were assayed in the culture fluid. Both 2% and 1% alkaline glutaraldehyde inactivated cell free HIV within one minute; 2% alkaline glutaraldehyde also inactivated cell free virus in serum within two minutes, but a 1% solution was ineffective after 15 minutes'' immersion. Cell associated HIV was inactivated by 2% alkaline glutaraldehyde within two minutes. Seventy per cent industrial methylated spirit failed to inactivate cell free and cell associated HIV within 20 and 15 minutes, respectively, and 70% ethanol did not inactivate cell free virus within 10 minutes. Seventy per cent industrial methylated spirit and ethanol are not suitable for surface disinfection of HIV. Fresh 2% solutions of alkaline glutaraldehyde are effective, but care should be taken that they are not too dilute or have not become stale when used for disinfecting HIV associated with organic matter.  相似文献   

14.
Summary Seasonal changes in the mitochondrial ultrastructure were examined in palisade parenchyma cells of a tuft-formingDiapensia lapponica L. collected at monthly intervals in Northern Finland. Quantitative analyses to measure volume and surface densities were conducted during different periods of growth (stages of growth, acclimation, winter period and deacclimation) in the annual cycle.The volume density was highest in the summer and lowest in the spring; the difference was significant with both fixatives used GA and GA/FA. The largest membrane area (the mitochondrial outer membrane and the cristal membranes together) was observed in the summer and autumn, and was significantly less in the winter and spring. This correlated with fewer mitochondria in the spring and a smaller number of cristae in the winter and spring. In the material fixed in GA/FA the distribution of length/width ratios of mitochondria was relatively uniform in all seasons. However, the mitochondrial ultrastructure had the most varied appearance during the winter. Hypertonie GA/FA solution did not cause significant differences either in the ultrastructure or the volume and surface densities of the mitochondria.Abbreviations GA glutaraldehyde - GA/FA glutaraldehyde/formaldehyde  相似文献   

15.
A systematic study concerning the effect of aqueous solution of alcohols and polyols with four carbon atoms on β-lactoglobulin stability is presented. The protein was chosen due to its functional properties and applications in food and pharmaceutical industries and because its structure and properties in aqueous solution have been widely described. The alcohols having a four carbon chain were selected to examine the effect of the gradual increase in the number of OH groups on protein stability.

Protein thermal stability in water, buffers and dilute aqueous solutions of 1-butanol, 1,2-butanediol, 1,2,4-butanetriol and 1,2,3,4-butanetetrol was evaluated by fluorescence spectroscopy. The results were used to determine the temperature range in which the unfolding process is reversible and the protein denaturation temperature in acetate buffer pH 5.5 and in the aqueous mixed solvents. Thermodynamic results show that alcohol denaturating effect diminishes gradually as the number of OH groups increase.  相似文献   


16.
Summary Human red blood cells (RBC) were crosslinked with glutaraldehyde (GA) by using a hemodialyzer which is used as an artificial kidney. Human RBC, which was in a flow of 2 ml/min, was extensively crosslinked with 50 mM GA solution of 10 ml/min flow rate. The crosslinked RBC showed high stability against osmotic pressure. The oxygen transport activity of the crosslinked RBC was similar to unmodified RBC. This crosslinking method could be used for the development of an efficient reactor which produces a stable and active RBC.  相似文献   

17.
The X-ray structure analysis of a cross-linked crystal of concanavalin A soaked with the tripeptide molecule as the probe molecule showed electron density corresponding to full occupation in the binding pocket. The site lies on the surface of concanavalin A and is surrounded by three symmetry-related molecules. The crystal structure of the tripeptide complex was refined at 2.4-Å resolution to an R-factor of 17.5%, (Rfree factor of 23.7%), with an RMS deviation in bond distances of 0.01 Å. The model includes all 237 residue of concanavalin A, 1 manganese ion, 1 calcium ion, 161 water molecules, 1 glutaraldehyde molecule, and 1 tripeptide molecule. This X-ray structure analysis also provides an approach to mapping the binding surface of crystalline protein with a probe molecule that is dissolved in a mixture of organic solvent with water or in neat organic solvent but is hardly dissolved in aqueous solution.  相似文献   

18.
Glycyrrhizin (GL), a molecule of glycyrrhetinic acid (GA), is an aqueous extract from licorice root. These compounds are well known for their anti-inflammatory, hepatocarcinogenesis, antiviral, and interferon-inducing activities. This study is the first attempt to investigate the binding of GL and GA with DNA. The effect of ligand complexation on DNA aggregation and condensation was investigated in aqueous solution at physiological conditions, using constant DNA concentration (6.25?mM) and various ligands/polynucleotide (phosphate) ratios of 1/240, 1/120, 1/80, 1/40, 1/20, 1/10, 1/5, 1/2, and 1/1. Fourier transform infrared and ultraviolet (UV)-visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of ligand-DNA complexes in aqueous solution. Spectroscopic evidence showed that GL and GA bind DNA via major and minor grooves as well as the backbone phosphate group with overall binding constants of K(GL-DNA)=5.7×10(3) M(-1), K(GA-DNA)=5.1×10(3) M(-1). The affinity of ligand-DNA binding is in the order of GL>GA. DNA remained in the B-family structure, whereas biopolymer aggregation occurred at high triterpenoid concentrations.  相似文献   

19.
Reduced erythrocyte deformability alters pulmonary hemodynamics   总被引:1,自引:0,他引:1  
Isolated rat lungs were perfused with suspensions containing normal and stiffened erythrocytes (RBCs) to assess the effect of altered RBC deformability on pulmonary hemodynamics. RBC suspensions were prepared using cells previously incubated in isosmolar phosphate-buffered saline with or without 0.0125 or 0.01875% glutaraldehyde. Washed RBCs were resuspended in isosmolar 4% albumin saline solution. Isolated rat lungs were perfused with control and stiffened cells by the use of a perfusion system that allowed rapid switching between suspensions. Pressure-flow (P/Q) curves were constructed by measuring pulmonary arterial pressure (Ppa) over a range of flow rates. In a second set of experiments, P/Q curves were generated for perfusion with control and stiffened cells (0.0125% glutaraldehyde) before and after vasoconstriction with a synthetic prostaglandin analogue (U 46619). RBC deformability was quantified in all experiments by determination of filtration time of a dilute cell suspension through a 4.7 microns Nuclepore filter. Incubation with 0.0125 or 0.01875% glutaraldehyde produced a 6 or 21% decrease in RBC deformability, respectively. These decreases in deformability were associated with significant increases in Ppa at each flow rate. The increases in Ppa correlated significantly with the degree of RBC stiffening. With 0.0125% glutaraldehyde, the P/Q curve was shifted upward without a change in slope, whereas incubation with 0.01875% glutaraldehyde resulted in a significant increase in slope. Vasoconstriction and perfusion with stiffened RBCs had additive effects on Ppa. These findings suggest that decreases in RBC deformability cause physiologically significant elevations in hemodynamic resistance in the pulmonary circuit independent of vasoactivity.  相似文献   

20.
The sizes and shapes of lutein aggregates in acetone aqueous solution were examined by spectroscopic analyses and electron microscopic observation, since lutein dispersed into acetone aqueous solution and provided a much simpler system than others. This system is suitable for basic research on lutein aggregates. The lutein aggregate gave maximum molar ellipticity in acetone concentrations from 35 to 45% aqueous solution. When the acetone concentration increased, CD spectra were reversed in 45% concentration from a negative exciton chirality to the positive. Since the aggregates were most slender in these acetone concentrations, it was found that the length of the lutein aggregate was closely related to the molar ellipticity. The apparent widths of the aggregates became large with increases of the acetone concentration after the reversion of CD spectra, where the molar ellipticities were diminished. These results are similar to those for the lutein aggregates in dilute surfactant solution, and this system is clearer and simpler for electron microscopic observation than those in surfactant solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号