首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DCs) express cell surface lectins that are potentially involved in the recognition, uptake, and presentation of glycosylated foreign substances. A unique calcium-type (C-type) lectin, the macrophage galactose (Gal)-type C-type lectin (MGL/CD301) expressed on DCs, is thought to participate in the recognition of molecules from both altered self and pathogens due to its monosaccharide specificity for Gal and N-acetylgalactosamine (GalNAc). Although mice have two MGL genes, Mgl1 and Mgl2, their distinct roles have not been previously explored. The present report characterizes the properties of MGL2 by examining its distribution and its role in antigen presentation by DCs. We generated an MGL2-specific monoclonal antibody and examined MGL2 expression in tissues by immunohistochemistry and in isolated cells by flow cytometry. The cells reactive with this antibody were shown to be a portion of MGL1-expressing cells, mostly conventional DCs. Internalization of soluble polyacrylamide polymers (PAA) with α-GalNAc residues (GalNAc-PAA) by bone marrow-derived DCs (BM-DCs) was mediated by MGL2, as revealed by a comparison of Mgl1−/− and Mgl2−/− BM-DCs with wild-type BM-DCs. Biotinylated GalNAc-PAA conjugated to streptavidin (SAv) was more efficiently presented to SAv-primed T cells by BM-DCs than β-N-acetylglucosamine-PAA conjugated to SAv or SAv alone as shown by thymidine uptake and cytokine production. This is the first report that demonstrates the involvement of GalNAc residues in antigen uptake and presentation by DCs that lead to CD4+ T cell activation.  相似文献   

2.
In the present study, we used high-speed chronoamperometry to examine serotonin (5-HT) transporter (5-HTT) function in vivo in 2-, 5-, and 10-month-old brain-derived neurotrophic factor (BDNF)+/- mice. The rate of clearance of exogenously applied 5-HT was measured in CA3 region of hippocampus. In 2-month-old mice, the rate of 5-HT clearance did not differ between BDNF+/+ and BDNF+/- mice. In BDNF+/+ mice, 5-HT clearance rate (Tc) increased markedly with age. In contrast, Tc remained relatively static in BDNF+/- mice across 2-, 5-, and 10-month age groups. At 5 months of age, female BDNF+/+ mice had a lower maximal velocity (Vmax) for 5-HT clearance than male BDNF+/+ mice. There was a similar trend in 5-month-old BDNF+/- mice, but this did not reach statistical significance. There was an age-dependent increase in KT value for 5-HT clearance (i.e., decreased in vivo affinity of 5-HTT), but no significant effect of genotype or gender. 5-HTT density, as measured by [3H]cyanoimipramine binding, was not different between BDNF+/+ and BDNF+/- mice, although there was a significant increase in 5-HTT binding with age. The selective 5-HT reuptake inhibitor fluvoxamine (50 and 100 pmol) significantly decreased 5-HT clearance in BDNF+/+ mice, but not in BDNF+/- mice. Our data suggest that the profoundly reduced ability of 5- and 10-month-old BDNF+/- mice to clear 5-HT is not because of a decrease in the total number of 5-HTTs, but may be due to functional deficits in the 5-HTT, e.g., in the machinery/signaling required for insertion of 5-HTTs into the plasma membrane and/or activation of the 5-HTT once it is positioned to take up 5-HT from extracellular fluid.  相似文献   

3.
Pathogenesis of cleft palate in TGF-beta3 knockout mice.   总被引:13,自引:0,他引:13  
We previously reported that mutation of the transforming growth factor-beta3 (TGF-beta3) gene caused cleft palate in homozygous null (-/-) mice. TGF-beta3 is normally expressed in the medial edge epithelial (MEE) cells of the palatal shelf. In the present study, we investigated the mechanisms by which TGF-beta3 deletions caused cleft palate in 129 x CF-1 mice. For organ culture, palatal shelves were dissected from embryonic day 13.5 (E13.5) mouse embryos. Palatal shelves were placed singly or in pairs on Millipore filters and cultured in DMEM/F12 medium. Shelves were placed in homologous (+/+ vs +/+, -/- vs -/-, +/- vs +/-) or heterologous (+/+ vs -/-, +/- vs -/-, +/+ vs +/-) paired combinations and examined by macroscopy and histology. Pairs of -/- and -/- shelves failed to fuse over 72 hours of culture whereas pairs of +/+ (wild-type) and +/+ or +/- (heterozygote) and +/-, as well as +/+ and -/- shelves, fused within the first 48 hour period. Histological examination of the fused +/+ and +/+ shelves showed complete disappearance of the midline epithelial seam whereas -/- and +/+ shelves still had some seam remnants. In order to investigate the ability of TGF-beta family members to rescue the fusion between -/- and -/- palatal shelves in vitro, either recombinant human (rh) TGF-beta1, porcine (p) TGF-beta2, rh TGF-beta3, rh activin, or p inhibin was added to the medium in different concentrations at specific times and for various periods during the culture. In untreated organ culture -/- palate pairs completely failed to fuse, treatment with TGF-beta3 induced complete palatal fusion, TGF-beta1 or TGF-beta2 near normal fusion, but activin and inhibin had no effect. We investigated ultrastructural features of the surface of the MEE cells using SEM to compare TGF-beta3-null embryos (E 12. 5-E 16.5) with +/+ and +/- embryos in vivo and in vitro. Up to E13.5 and after E15.5, structures resembling short rods were observed in both +/+ and -/- embryos. Just before fusion, at E14.5, a lot of filopodia-like structures appeared on the surface of the MEE cells in +/+ embryos, however, none were observed in -/- embryos, either in vivo or in vitro. With TEM these filopodia are coated with material resembling proteoglycan. Interestingly, addition of TGF-beta3 to the culture medium which caused fusion between the -/- palatal shelves also induced the appearance of these filopodia on their MEE surfaces. TGF-beta1 and TGF-beta2 also induced filopodia on the -/- MEE but to a lesser extent than TGF-beta3 and additionally induced lamellipodia on their cell surfaces. These results suggest that TGF-beta3 may regulate palatal fusion by inducing filopodia on the outer cell membrane of the palatal medial edge epithelia prior to shelf contact. Exogenous recombinant TGF-beta3 can rescue fusion in -/- palatal shelves by inducing such filopodia, illustrating that the effects of TGF-beta3 are transduced by cell surface receptors which raises interesting potential therapeutic strategies to prevent and treat embryonic cleft palate.  相似文献   

4.
We report that a decrease in facilitative glucose transporter (GLUT1) expression and reduced glucose transport trigger apoptosis in the murine blastocyst. Inhibition of GLUT1 expression either by high glucose conditions or with antisense oligodeoxynucleotides significantly lowers protein expression and function of GLUT1 and as a result induces a high rate of apoptosis at the blastocyst stage. Similar to wild-type mice, embryos from streptozotocin-induced diabetic Bax -/- mice experienced a significant decrease in glucose transport compared with embryos from non-diabetic Bax -/- mice. However, despite this decrease, these blastocysts demonstrate significantly fewer apoptotic nuclei as compared with blastocysts from hyperglycemic wild-type mice. This decrease in preimplantation apoptosis correlates with a decrease in resorptions and malformations among the infants of the hyperglycemic Bax -/- mice versus the Bax +/+ and +/- mice. These findings suggest that hyperglycemia by decreasing glucose transport acts as a cell death signal to trigger a BAX-dependent apoptotic cascade in the murine blastocyst. This work also supports the hypothesis that increased apoptosis at a blastocyst stage because of maternal hyperglycemia may result in loss of key progenitor cells and manifest as a resorption or malformation, two adverse pregnancy outcomes more common in diabetic women.  相似文献   

5.
Apoptotic lymphocytes are readily identified in murine lungs, both during the response to particulate Ag and in normal mice. Because apoptotic lymphocytes are seldom detected in other organs, we hypothesized that alveolar macrophages (AMphi) clear apoptotic lymphocytes poorly. To test this hypothesis, we compared in vitro phagocytosis of apoptotic thymocytes by resident AMphi and peritoneal macrophages (PMphi) from normal C57BL/6 mice. AMphi were deficient relative to PMphi both in percentage containing apoptotic thymocytes (19.1 +/- 1% vs 96 +/- 2.6% positive) and in phagocytic index (0.23 +/- 0.02 vs 4.2 +/- 0.67). This deficiency was not due to kinetic differences, was seen with six other inbred mouse strains, and was not observed using carboxylate-modified polystyrene microbeads. Annexin V blockade indicated that both Mphi types cleared apoptotic T cells by a mechanism involving phosphatidylserine expression. By contrast, neither mAb blockade of a variety of receptors (CD11b, CD29, CD51, and CD61) known to be involved in clearance of apoptotic cells, nor the tetrapeptide RGDS (arginine-glycine-aspartic acid-serine) blocked ingestion by either type of macrophage. To confirm these studies, apoptotic thymocytes were given intratracheally or i.p. to normal mice, and then AMphi or PMphi were recovered 30-240 min later. Ingestion of apoptotic thymocytes by AMphi in vivo was significantly decreased at all times. Defective ingestion of apoptotic lymphocytes may preserve AMphi capacity to produce proinflammatory cytokines in host defense, but could contribute to development of autoimmunity by failing to eliminate nucleosomes.  相似文献   

6.
Lipoprotein lipase (LPL) provides tissues with fatty acids, which have complex effects on glucose utilization and insulin secretion. To determine if LPL has direct effects on glucose metabolism, we studied mice with heterozygous LPL deficiency (LPL+/-). LPL+/- mice had mean fasting glucose values that were up to 39 mg/dl lower than LPL+/+ littermates. Despite having lower glucose levels, LPL+/- mice had fasting insulin levels that were twice those of +/+ mice. Hyperinsulinemic clamp experiments showed no effect of genotype on basal or insulin-stimulated glucose utilization. LPL message was detected in mouse islets, INS-1 cells (a rat insulinoma cell line), and human islets. LPL enzyme activity was detected in the media from both mouse and human islets incubated in vitro. In mice, +/- islets expressed half the enzyme activity of +/+ islets. Islets isolated from +/+ mice secreted less insulin in vitro than +/- and -/- islets, suggesting that LPL suppresses insulin secretion. To test this notion directly, LPL enzyme activity was manipulated in INS-1 cells. INS-1 cells treated with an adeno-associated virus expressing human LPL had more LPL enzyme activity and secreted less insulin than adeno-associated virus-beta-galactosidase-treated cells. INS-1 cells transfected with an antisense LPL oligonucleotide had less LPL enzyme activity and secreted more insulin than cells transfected with a control oligonucleotide. These data suggest that islet LPL is a novel regulator of insulin secretion. They further suggest that genetically determined levels of LPL play a role in establishing glucose levels in mice.  相似文献   

7.
We analysed the spatial and temporal distribution of apoptosis in human cerebellum development, during embryonic and fetal periods. Cerebella excised from two human embryos (8 weeks old) and eight fetuses (12-22 weeks old), were paraffin embedded and serially sectioned. Apoptotic cells were identified by propidium iodide staining, and TUNEL. In addition, immunohistochemistry for suicide receptor Fas(APO-1/CD95) was performed. We determined the distribution and percentage of apoptotic cells as well as Fas(APO-1/CD95)-positive cells in different regions and stages of development. Apoptotic cells were seen in both proliferative zones and postmitotic regions along the migratory pathways as well as in the developing cerebellar cortex in all examined stages. The Fas(APO-1/CD95) immunoreactivity was present in all examined stages in a small population of apoptotic cells: either neuroblasts or differentiated cells in postmitotic zones. These findings suggest that apoptosis drives the selection of the cells which are committed to differentiate during the early stages of cerebellar development. The differences between apoptotic cells distribution and Fas receptor expression suggest that cell selection is driven by different apoptotic pathways.  相似文献   

8.
Perforin (pfp)/Fas ligand (FasL) double-deficient mice have previously been shown to be infertile, lose weight and die prematurely due to tissue destruction caused by a significant inflammatory infiltrate of monocytes/macrophages and T cells. Herein we have compared disease progression in mice additionally deficient in the inflammatory mediator TNF. Unlike pfp/FasL double-deficient mice (TNF+/+ pfp-/- gld), mice lacking functional TNF, FasL and pfp (TNF-/- pfp-/- gld) were comparatively fertile, with the majority of mice not suffering severe pancreatitis or hysterosalphingitis in the first 5 months of life. The mean lifespan of TNF-/- pfp-/- gld mice was 217 +/- 79 days compared with 69 +/- 10 days for TNF+/+ pfp-/- gld mice and the majority of moribund TNF-/- pfp-/- gld mice appeared to die as a result of severe pancreatitis, suggesting that loss of TNF was not completely protective. At 8 weeks of age, characteristics associated with the gld phenotype, such as expansion of B220+ CD4- CD8- T cells, lymphadenopathy and hypergammaglobulinemia were comparable between TNF+/+ pfp-/- gld and TNF-/- pfp-/- gld mice, although the lymphoid organs of TNF+/+ pfp-/- gld mice contained greater numbers of B220+ CD4- CD8- T cells, macrophages and T cells. We conclude that TNF is necessary for the full manifestation of immune dysregulation caused by pfp/FasL-deficiency, in particular in the early and overwhelming tissue infiltration and destruction caused by inflammatory cells.  相似文献   

9.
Embryo electrofusion and tetraploid blastocyst microinjection is a modification of the traditional embryonic stem cell (ES cell)-based method to generate targeted mutant mice. Viability of tetraploid embryos is reportedly lower than with diploid embryos, with considerable interstrain variation. Here we assessed fetus and pup viability after ES cell microinjection of tetraploid blastocysts derived from outbred, hybrid, and inbred mice. Two-cell mouse embryos (C57BL/6NTac [B6], n = 788; B6D2F1/Tac [BDF1], n = 1871; Crl:CD1(ICR) [CD1], n = 1308) were electrofused; most resultant tetraploid blastocysts were injected with ES cells and surgically transferred into pseudopregnant recipient mice. Reproductive tracts were examined at midgestation for embryologic studies using B6 and BDF1 blastocysts; implantation sites and viable fetuses were counted. Pregnancies were carried to term for studies of targeted mutant mice using BDF1 and CD1 blastocysts, and pup yield was evaluated. Electrofusion rates of 2-cell embryos did not differ among B6, BDF1, and CD1 mice (overall mean, 92.8% +/- 5.4%). For embryologic studies, 244 B6 blastocysts were surgically transferred and 1 fetus was viable (0.41%), compared with 644 BDF1 blastocysts surgically transferred and 88 viable fetuses (13.7%). For targeted mutant mouse studies, 259 BDF1 blastocysts were surgically transferred yielding 10 pups (3.9%); 569 CD1 blastocysts yielded 44 pups (7.7%).  相似文献   

10.
The importance of lymphotoxin alpha (LTalpha) in lymphoid organogenesis is well established. Although LTalpha has been implicated in the pathogenesis of T-cell-mediated immunopathologies, the requirement for LTalpha in T-cell activation and effector function in vivo is not well understood. To determine the role of LTalpha in T-cell activation in vivo, we compared the generation of antigen-specific T-cell responses between wild type (+/+) and LTalpha-deficient (LTalpha(-/-)) mice during an acute infection with lymphocytic choriomeningitis virus (LCMV). Our studies showed that LCMV-infected LTalpha(-/-) mice had a profound impairment in the activation and expansion of virus-specific CD8 T cells in the spleen, as determined by cytotoxicity assays, intracellular staining for gamma interferon, and staining with major histocompatibility complex class I tetramers. Further, the nonlymphoid organs of LTalpha(-/-) mice also contained substantially lower number of LCMV-specific CD8 T cells than those of +/+ mice. Greatly reduced virus-specific CD8 T-cell responses in LTalpha(-/-) mice led to a defect in LCMV clearance from the tissues. In comparison to that in +/+ mice, the activation of LCMV-specific CD4 T cells was also significantly attenuated in LTalpha(-/-) mice. Adoptive transfer experiments were conducted to determine if abnormal lymphoid architecture in LTalpha(-/-) mice caused the impairment in the activation of LCMV-specific T-cell responses. Upon adoptive transfer into +/+ mice, the activation and expansion of LCMV-specific LTalpha(-/-) T cells were restored to levels comparable to those of +/+ T cells. In a reciprocal cell transfer experiment, activation of +/+ T cells was significantly reduced upon transfer into LTalpha(-/-) mice. These results showed that impairment in the activation of LCMV-specific T cells in LTalpha(-/-) mice may be due to abnormal lymphoid architecture and not to an intrinsic defect in LTalpha(-/-) T cells.  相似文献   

11.
Binding specificities of mouse macrophage galactose-type C-type lectin 1 (MGL1/CD301a) and 2 (MGL2/CD301b) toward various oligosaccharides were compared by frontal affinity chromatography. MGL1 preferentially bound oligosaccharides containing Lewis(X) (Le(X)) trisaccharides among 111 oligosaccharides tested, whereas MGL2 preferentially bound globoside Gb4. The important amino acids for the preferential bindings were investigated by pair-wise site-directed mutagenesis at positions 61, 89, 97, 100, 110-113, 115, 124, and 125 in the soluble recombinant carbohydrate recognition domains (CRD) prepared in Escherichia coli and purified with galactose-Sepharose. Mutations of Val, Ala, Thr, and Phe at positions 61, 89, 111 and 125 on MGL1 CRD caused reductions in Le(X) binding. Mutations of MGL2 CRD at Leu, Arg, Arg, and Tyr at positions 61, 89, 115 and 125 were implicated in the preference for beta-GalNAc. Le(X) binding was observed with MGL2 mutants of Arg89Ala and Arg89Ala/Ser111Thr. MGL1 mutants of Ala89Arg and Ala89Arg/Pro115Arg showed beta-GalNAc bindings. Molecular modeling illustrated potential direct molecular interactions of Leu61, Arg89, and His109 in MGL2 CRD with GalNAc.  相似文献   

12.
Murine preimplantation embryos exposed to hyperglycemia experience decreased glucose transport, and overexpression of the proapoptotic protein BAX, leading to increased apoptosis. These changes may account for the increased rates of miscarriages and malformations seen in women with diabetes mellitus. To test whether p53 expression is necessary for hyperglycemia-induced apoptosis, p53+/+, +/-, -/- embryos were obtained by superovulation. Two-cell embryos were cultured to a blastocyst stage in 52 mM D- or L-glucose. Apoptosis was detected using terminal dUTP nick end labeling (TUNEL) assays. In vivo studies were performed in the same manner using blastocysts recovered from streptozotocin-induced diabetic mothers. Both in vitro and in vivo studies showed that wildtype embryos had a significantly higher percentage of TUNEL-positive nuclei than p53+/- and -/- embryos. To test whether p53 is upstream of BAX, immunofluorescent confocal microscopy and immunoprecipitation/ immunoblotting were performed on blastocysts cultured in high vs. control glucose conditions. Blastocysts from p53+/+ mice exhibited increased BAX staining vs. p53+/- and -/- embryos. Next, to determine whether a decrease in glucose transport was upstream or downstream of p53, deoxyglucose transport was measured in individual blastocysts from p53+/+ and +/- diabetic vs. nondiabetic mice. Embryos from diabetic p53+/- mice exhibit a 44% decrease in glucose transport, similar to the 38% decrease seen in embryos from diabetic p53+/+ mice. Taken together, these results strongly indicate that p53 plays a role in hyperglycemia-induced apoptosis, upstream of BAX overexpression and downstream of the decrease in glucose transport experienced by the mouse preimplantation embryo.  相似文献   

13.
Hydrogen peroxide-inducible clone-5 (Hic-5) is a transforming growth factor (TGF)-β1-inducible focal adhesion protein. We previously demonstrated that Hic-5 was localized in mesangial cells and its expression was associated with glomerular cell proliferation and matrix expansion in human and rat glomerulonephritis (GN). In the present study, we first assessed the role of Hic-5 in mesangioproliferative GN by injecting Habu venom into heminephrectomized wild type (Hic-5+/+) and Hic-5-deficient (Hic-5-/-) mice. Hic-5+/+ GN mice exhibited glomerular cell proliferation on day 7. Surprisingly, glomerular cell number and Ki-67-positive cells in Hic-5-/- GN mice were significantly greater than those in Hic-5+/+ GN mice on day 7, although the number of glomerular apoptotic cells and the expression of growth factors (platelet-derived growth factor-BB and TGF-β1) and their receptors were similarly increased in both Hic-5+/+ and Hic-5-/- GN mice. In culture experiments, proliferation assays showed that platelet-derived growth factor-BB and TGF-β1 enhanced the proliferation of Hic-5-/- mesangial cells compared with Hic-5+/+ mesangial cells. In addition, mitogenic regulation by Hic-5 was associated with altered and coordinated expression of cell cycle-related proteins including cyclin D1 and p21. The present results suggest that Hic-5 might regulate mesangial cell proliferation in proliferative GN in mice. In conclusion, modulation of Hic-5 expression might have a potential to prevent mesangial cell proliferation in the acute mitogenic phase of glomerulonephritis.  相似文献   

14.
Studies have indicated that gammadelta T lymphocytes play an important role in the regulation of immune function and the clearance of intracellular pathogens. We have recently reported that intraepithelial lymphocytes (IEL), which are rich in gammadelta T cells, within the small intestine illustrated a significant increase in apoptosis and immune dysfunction in mice subjected to sepsis. However, the contribution of gammadelta T cells to the host response to polymicrobial sepsis remains unclear. In this study, we initially observed that after sepsis induced by cecal ligation and puncture (CLP), there was an increase in small intestinal IEL CD8+gammadelta+ T cells in control gammadelta+/+ mice. Importantly, we subsequently found an increased early mortality in mice lacking gammadelta T cells (gammadelta-/- mice) after sepsis. This was associated with decreases in plasma TNF-alpha, IL-6, and IL-12 levels in gammadelta-/- mice compared with gammadelta+/+ mice after sepsis. In addition, even though in vitro LPS-stimulated peritoneal macrophages showed a reduction in IL-6 and IL-12 release after CLP, these cytokines were less suppressed in macrophages isolated from gammadelta-/- mice. Alternatively, IL-10 release was not different between septic gammadelta+/+ and gammadelta-/- mice. Whereas T helper (Th)1 cytokine release by anti-CD3-stimulated splenocytes was significantly depressed in septic gammadelta+/+ mice, there was no such depression in gammadelta-/- mice. However, gammadelta T cell deficiency had no effect on Th2 cytokine release. These findings suggest that gammadelta T cells may play a critical role in regulating the host immune response and survival to sepsis, in part by alteration of the level of IEL CD8+gammadelta+ T cells and through the development of the Th1 response.  相似文献   

15.
The existence of T cells restricted for the MHC I-like molecule CD1 is well established, but the function of these cells is still obscure; one implication is that CD1-dependent T cells regulate autoimmunity. In this study, we investigate their role in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, using CD1-deficient mice on a C57BL/6 background. We show that CD1-/- mice develop a clinically more severe and chronic EAE compared with CD1+/+ C57BL/6 mice, which was histopathologically confirmed with increased demyelination and CNS infiltration in CD1-/- mice. Autoantigen rechallenge in vitro revealed similar T cell proliferation in CD+/+ and CD1-/- mice but an amplified cytokine response in CD1-/- mice as measured by both the Th1 cytokine IFN-gamma and the Th2 cytokine IL-4. Investigation of cytokine production at the site of inflammation showed a CNS influx of TGF-beta1-producing cells early in the disease in CD1+/+ mice, which was absent in the CD1-/- mice. Passive transfer of EAE using an autoreactive T cell line induced equivalent disease in both groups, which suggested additional requirements for activation of the CD1-dependent regulatory pathway(s). When immunized with CFA before T cell transfer, the CD1-/- mice again developed an augmented EAE compared with CD1+/+ mice. We suggest that CD1 exerts its function during CFA-mediated activation, regulating development of EAE both through enhancing TGF-beta1 production and through limiting autoreactive T cell activation, but not necessarily via effects on the Th1/Th2 balance.  相似文献   

16.
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a member of the family of selenium-dependent enzymes that catalyze the reduction of cell membrane-bound phospholipid hydroperoxides in situ and thus protects against membrane damage. Overexpression of GPx4 protects cultured cells from phosphatidylcholine hydroperoxide (PCOOH)-induced loss of mitochondrial membrane potential and blocks cell death induced by treatment with various apoptotic agents. We have generated mice that are heterozygous for a GPx4 null allele (GPx4 +/-); the homozygous null genotype is embryonic lethal. We report that cultured lung fibroblasts (LFs) isolated from adult GPx4 +/- mice had approximately 50% of the GPx4 activity of LFs from GPx4 +/+ mice and were significantly more susceptible to H2O2, cadmium, and cumene hydroperoxide-induced cytotoxicity, as measured by neutral red assay. Both GPx4 +/+ and GPx4 +/- LFs were susceptible to PCOOH-induced cytotoxicity at a high PCOOH concentration. We also found that GPx4 +/- LFs have lower mitochondrial membrane potential, greater cardiolipin oxidation, and lower amounts of reduced thiols relative to GPx4 +/+ LFs, but are more resistant than GPx4 +/+ LFs to further decrements in these endpoints following PCOOH treatment. These results suggest that adult lung fibroblasts deficient in GPx4 may have upregulated compensatory mechanisms to deal with the highly oxidized environment in which they developed.  相似文献   

17.
Sendai virus is eliminated from the respiratory tract of gamma interferon (IFN-gamma) -/- BALB/c mice with normal kinetics. The level of virus-specific cytotoxic T-lymphocyte (CTL) activity in the cell population recovered by bronchoalveolar lavage is unimpaired, the prevalence of interleukin-4 (IL-4)-producing cells is increased, and the titers of virus-specific immunoglobulins IgG1 and IgG2b are higher in the IFN-gamma -/- mice. The emergence of this T-helper 2 response profile in both lymphoid tissue and the pneumonic lung has no obvious deleterious consequences. Virus clearance is slightly delayed following depletion of the CD4+ subset, with the effect being similar in magnitude for IFN-gamma -/- and +/+ mice. However, the generation of CTL precursors (CTLp) is diminished in the IFN-gamma -/- (but not +/+) mice in the absence of concurrent CD4+ T help. Apparently the clonal expansion of the CTLp population can be promoted either by a cytokine (perhaps IL-2) produced by the IFN-gamma -/- CD4+ T cells or by IFN-gamma made by other cell types in the +/+ mice.  相似文献   

18.
CD36 (fatty acid translocase) is involved in high-affinity peripheral fatty acid uptake. Mice lacking CD36 exhibit increased plasma free fatty acid and triglyceride (TG) levels and decreased glucose levels. Studies in spontaneous hypertensive rats lacking functional CD36 link CD36 to the insulin-resistance syndrome. To clarify the relationship between CD36 and insulin sensitivity in more detail, we determined insulin-mediated whole-body and tissue-specific glucose uptake in CD36-deficient (CD36-/-) mice. Insulin-mediated whole-body and tissue-specific glucose uptake was measured by d-[3H]glucose and 2-deoxy-d-[1-3H]glucose during hyperinsulinemic clamp in CD36-/- and wild-type control littermates (CD36+/+) mice. Whole-body and muscle-specific insulin-mediated glucose uptake was significantly higher in CD36-/- compared with CD36+/+ mice. In contrast, insulin completely failed to suppress endogenous glucose production in CD36-/- mice compared with a 40% reduction in CD36+/+ mice. This insulin-resistant state of the liver was associated with increased hepatic TG content in CD36-/- mice compared with CD36+/+ mice (110.9 +/- 12.0 and 68.9 +/- 13.6 microg TG/mg protein, respectively). Moreover, hepatic activation of protein kinase B by insulin, measured by Western blot, was reduced by 54%. Our results show a dissociation between increased muscle and decreased liver insulin sensitivity in CD36-/- mice.  相似文献   

19.
Cystic fibrosis (CF)2 is a fatal genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) that is commonly associated with chronic pulmonary infections with mucoid Pseudomonas aeruginosa (PA). To test the hypothesis that CFTR plays a direct role in PA adhesion and clearance, we have used mouse lines expressing varying levels of human (h) or mouse (m) CFTR. A subacute intratracheal dose of 3 x 10(6) bacteria was cleared with similar kinetics in control wild-type (WT) and transgenic mice overexpressing hCFTR in the lung from the surfactant protein C (SP-C) promoter (SP-C-hCFTR+/-). In a second series of experiments, the clearance of an acute intratracheal dose of 1.5 x 10(7) PA bacteria was also similar in WT, hemizygous SP-C-hCFTR+/-, and bitransgenic gut-corrected FABP-hCFTR+/+-mCFTR-/-, the latter lacking expression of mCFTR in the lung. However, a small but significant decrease in bacterial killing was observed in lungs of homozygote SP-C-hCFTR+/+ mice. Lung pathology in both WT and SP-C-hCFTR+/+ mice was marked by neutrophilic inflammation and bacterial invasion of perivascular and subepithelial compartments. Bacteria were associated primarily with leukocytes and were not associated with alveolar type II or bronchiolar epithelial cells, the cellular sites of SP-C-hCFTR+/+ transgene expression. The results indicate that there is no direct correlation between levels of CFTR expression and bacterial clearance or association of bacteria with epithelial cells in vivo.  相似文献   

20.
Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502–527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号