首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukocytosis of exercise: role of cardiac output and catecholamines   总被引:3,自引:0,他引:3  
The effect of propranolol (5 mg iv) on the leukocytosis of exercise was studied in seven normal young males. Leukocyte counts, plasma norepinephrine (NE), epinephrine (E), and cardiac output were measured at rest and in the steady state of several submaximal work loads when subjects exercised on a cycle ergometer. The results in control experiments were compared with those obtained on a different day with propranolol. Propranolol decreased heart rate at all work loads (P less than 0.001) but had no effect on the increase in cardiac output at increasing work loads. Plasma NE and E levels were similar at rest and in exercise in control and propranolol studies. There was no effect of propranolol on the increase in leukocyte counts with increasing work loads. Although propranolol did not affect the increase in total leukocyte count, the increase in lymphocyte count at higher work loads was less with propranolol. We conclude that the demargination of leukocytes from the pulmonary circulation in exercise is probably a mechanical effect of the increase in cardiac output. However, we have not excluded a contribution from a humoral event that would decrease the adherence of leukocytes to endothelium during exercise. The smaller increase in lymphocytes at higher work loads in the presence of propranolol suggests that catecholamines affect the lymphocyte count over and above their effect on cardiac output.  相似文献   

2.
Cardiac performance during bicycle ergometer tests with increasing loads was examined in 12- and 14-year-old boys at different stages of puberty, professionally trained in basketball and swimming, as well as in boys of the same age without regular athletic training. In all these boys, the cardiac chronotropic response grew in intensity with the power and duration of exercise, being maximal in 14-year-old adolescents untrained athletically. During exercise at 0.5 W/kg, the cardiac chronotropic function stabilized within the first ten seconds; at 1.0 and 1.5 W/kg, the heart rate increased more or less monotonically throughout the entire test period. In 12- and 14-year-old swimmers and in untrained boys, the threshold value for an adequate hemodynamic response was found at 0.5 W/kg. The patterns of stroke volume adaptation to increasing loads were shown to be dependent on athletic specialization and independent of age. During the first 30 s of exercise at 0.5 W/kg, cardiac output increased significantly over its basal level. Subsequent load increases to 1.0 and 1.5 W/kg were accompanied by progressive growth of this parameter during the whole period of exercise. Upon transition to a different workload, the increment of cardiac output decreased.  相似文献   

3.
Continuous breath-by-breath measurements of ventilatory parameters were performed during submaximal and maximal treadmill exercise in 21 highly conditioned oarsmen. Average maximum values of O2 uptake, minute ventilation (VI), tidal volume (VT), and respiratory frequency (f) were 6.60 l/min (73.5 ml X kg-1 X min-1), 200 l/min, 3.29 l, and 62 breaths/min, respectively. During the transition from moderate to heavy submaximal exercise, VT and f increased progressively. At near-maximal to maximal work loads, VT plateaued and then decreased slightly, while f continued to increase. Increase in f at the start of exercise was achieved predominantly by an abrupt decrease in expiratory duration (TE) with an equally abrupt, but much smaller, decrease in inspiratory duration (TI). During the transition from submaximal to maximal exercise, both TE and TI decreased progressively. Although f appeared to be entrained by stepping rate in a few subjects, the dominant trend during submaximal to maximal exercise was characterized by a relatively small increase in stepping rate with a much larger increment in f. Our data are consistent with the conclusion that exercise breathing patterns are determined by many interacting factors that vary at different work loads, in different individuals, and are probably also influenced by physical conditioning and previous experience.  相似文献   

4.
Slowly adapting pulmonary stretch receptors have been hypothesized to be the afferents mediating the vagally dependent, volume-related prolongation of expiratory time (TE) during expiratory loading. It has been further suggested that the vagal component of this prolongation of TE is due to the temporal summation of pulmonary stretch receptor (PSR) activity during expiratory loading. This hypothesis was tested in rabbits exposed to resistive and elastic single-breath expiratory loading while PSR's were simultaneously recorded. Both types of loads resulted in a decreased expired volume (VE) and increased expiratory duration (TE). The TE for resistive loads were significantly greater than for elastic loads for equivalent VE. Thus two different VE-TE relationships were found for resistive and elastic loads. When TE was plotted against the area under the expired volume trajectory, a single linear relationship was observed. PSR activity recorded during expiratory loading increased as VE decreased and TE increased. A single linear relationship resulted when the number of PSR spikes during the expiration was plotted against the associated TE for all types of loads. These findings demonstrate that the volume-related prolongation of TE with single-breath expiratory loads is associated with an increase in PSR discharge. These results support the hypothesis that the vagal component of load-dependent prolongation of TE is a function of both the temporal and spatial summation of PSR activity during the expiratory phase.  相似文献   

5.
Dennis J. Vince 《CMAJ》1970,102(9):946-948
In eight adult dogs the main pulmonary artery was constricted to elevate the right ventricular peak systolic pressure to 50% of the peak aortic pressure at rest. The response of the right ventricle was assessed immediately, at 30 minutes and at six months. The right ventricle responded to acute systolic loading by complete compensation. After 30 minutes there was a reduction in the right ventricular outflow tract resistance. The cardiac output, heart rate and aortic pressure were maintained. The right ventricular systolic ejection period, end-diastolic pressure, peak pressure time, mean systolic pressure, right ventricular—main pulmonary artery mean systolic gradient, right ventricular work index, systolic work and outflow tract resistance were all increased.The right ventricle in the dog was shown to have an immediate capacity to compensate for systolic loading and retains this capacity for long periods of time. The ability to increase work is accomplished by adaptations in right ventricular physiology which increase right ventricular mean systolic pressures and prolong the right ventricular ejection period.  相似文献   

6.
Methodical aspects of the relationship between pedalling rate and rotating mass and perceived exertion rating (PER; Borg, 1962) were studied in trained, untrained, and ill subjects in bicycle ergometry. Pedalling rate varied between 40 and 100 rpm, work load steps were 5, 10, 15 and 20 mkp/sec in the healthy subjects, and 2.5, 5, 7.5 and 10 mkp/sec in the patients. PER decreased with increasing pedalling rate in all healthy subjects. In the patients, PER increased moderately at work load of 2.5 mkp/sec, but decreased at higher work loads up to 80 rpm, followed by a slight increase at 100 rpm. Higher mass of the flywheel, studied in 6 trained subjects, lowered the PER insignificantly. In the healthy subjects, test criteria, such as reproducibility, reliability, sensitivity, and linearity remained almost unaffected by pedalling rate. In patients, increasing pedalling speed diminished reproducibility and sensitivity. The strictness of the PER work load relationship is lowered at higher pedalling rate, especially at 100 rpm. When using the PER scale, pedalling rate has to be considered as an factor of main influence.  相似文献   

7.
The aim of the study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling at different work loads and speeds. Six healthy subjects pedalled a weight-braked cycle ergometer at 0, 120 and 240 W at a constant speed of 60 rpm. The subjects also pedalled at 40, 60, 80 and 100 rpm against the same resistance, giving power outputs of 80, 120, 160 and 200 W respectively. The subjects were filmed with a cine-film camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work for the hip, knee and ankle joint muscles was calculated using a model based upon dynamic mechanics and described elsewhere. The total work during one pedal revolution significantly increased with increased work load but did not increase with increased pedalling rate at the same braking force. The relative proportions of total positive work at the hip, knee and ankle joints were also calculated. Hip and ankle extension work proportionally decreased with increased work load. Pedalling rate did not change the relative proportion of total work at the different joints.  相似文献   

8.
Ejection from military aircraft exerts substantial loads on the lumbar spine. Fractures remain common, although the overall survivability of the event has considerably increased over recent decades. The present study was performed to develop and validate a biomechanically accurate experimental model for the high vertical acceleration loading to the lumbar spine that occurs during the catapult phase of aircraft ejection. The model consisted of a vertical drop tower with two horizontal platforms attached to a monorail using low friction linear bearings. A total of four human cadaveric spine specimens (T12-L5) were tested. Each lumbar column was attached to the lower platform through a load cell. Weights were added to the upper platform to match the thorax, head-neck, and upper extremity mass of a 50th percentile male. Both platforms were raised to the drop height and released in unison. Deceleration characteristics of the lower platform were modulated by foam at the bottom of the drop tower. The upper platform applied compressive inertial loads to the top of the specimen during deceleration. All specimens demonstrated complex bending during ejection simulations, with the pattern dependent upon the anterior-posterior location of load application. The model demonstrated adequate inter-specimen kinematic repeatability on a spinal level-by-level basis under different subfailure loading scenarios. One specimen was then exposed to additional tests of increasing acceleration to induce identifiable injury and validate the model as an injury-producing system. Multiple noncontiguous vertebral fractures were obtained at an acceleration of 21 g with 488 g/s rate of onset. This clinically relevant trauma consisted of burst fracture at L1 and wedge fracture at L4. Compression of the vertebral body approached 60% during the failure test, with -6,106 N axial force and 168 Nm flexion moment. Future applications of this model include developing a better understanding of the vertebral injury mechanism during pilot ejection and developing tolerance limits for injuries sustained under a variety of different vertical acceleration scenarios.  相似文献   

9.
Quantitative prediction of environmental impacts of land-use and climate change scenarios in a watershed can serve as a basis for developing sound watershed management schemes. Water quantity and quality are key environmental indicators which are sensitive to various external perturbations. The aim of this study is to evaluate the impacts of land-use and climate changes on water quantity and quality at watershed scale and to understand relationships between hydrologic components and water quality at that scale under different climate and land-use scenarios. We developed an approach for modeling and examining impacts of land-use and climate change scenarios on the water and nutrient cycles. We used an empirical land-use change model (Conversion of Land Use and its Effects, CLUE) and a watershed hydrology and nutrient model (Soil and Water Assessment Tool, SWAT) for the Teshio River watershed in northern Hokkaido, Japan. Predicted future land-use change (from paddy field to farmland) under baseline climate conditions reduced loads of sediment, total nitrogen (N) and total phosphorous (P) from the watershed to the river. This was attributable to higher nutrient uptake by crops and less nutrient mineralization by microbes, reduced nutrient leaching from soil, and lower water yields on farmland. The climate changes (precipitation and temperature) were projected to have greater impact in increasing surface runoff, lateral flow, groundwater discharge and water yield than would land-use change. Surface runoff especially decreased in April and May and increased in March and September with rising temperature. Under the climate change scenarios, the sediment and nutrient loads increased during the snowmelt and rainy seasons, while N and P uptakes by crops increased during the period when fertilizer is normally applied (May through August). The sediment and nutrient loads also increased with increasing winter rainfall because of warming in that season. Organic nutrient mineralization and nutrient leaching increased as well under climate change scenarios. Therefore, we predicted annual water yield, sediment and nutrient loads to increase under climate change scenarios. The sediment and nutrient loads were mainly supplied from agricultural land under land use in each climate change scenario, suggesting that riparian zones and adequate fertilizer management would be a potential mitigation strategy for reducing these negative impacts of land-use and climate changes on water quality. The proposed approach provides a useful source of information for assessing the consequences of hydrology processes and water quality in future land-use and climate change scenarios.  相似文献   

10.
The ankle plantar flexor muscles, gastrocnemius (Gas) and soleus (Sol), have been shown to play important roles in providing body support and forward propulsion during human walking. However, there has been disagreement about the relative contributions of Gas and Sol to these functional tasks. In this study, using independent manipulations of body weight and body mass, we examined the relative contribution of the individual plantar flexors to support and propulsion. We hypothesized that Gas and Sol contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion. We tested this hypothesis by measuring muscle activity while experimentally manipulating body weight and mass by 1) decreasing body weight using a weight support system, 2) increasing body mass alone using a combination of equal added trunk load and weight support, and 3) increasing trunk loads (increasing body weight and mass). The rationale for this study was that muscles that provide body support would be sensitive to changes in body weight, whereas muscles that provide forward propulsion would be sensitive to changes in body mass. Gas activity increased with added loads and decreased with weight support but showed only a small increase relative to control trials when mass alone was increased. Sol activity showed a similar increase with added loads and with added mass alone and decreased in early stance with weight support. Therefore, we accepted the hypothesis that Sol and Gas contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion.  相似文献   

11.
The steep relationship between systolic force production and end diastolic volume (Frank-Starling relationship) in myocardium is a potentially important mechanism by which the work capacity of the heart varies on a beat-to-beat basis, but the molecular basis for the effects of myocardial fiber length on cardiac work are still not well understood. Recent studies have suggested that an intrinsic property of myocardium, stretch activation, contributes to force generation during systolic ejection in myocardium. To examine the role of stretch activation in length dependence of activation we recorded the force responses of murine skinned myocardium to sudden stretches of 1% of muscle length at both short (1.90 microm) and long (2.25 microm) sarcomere lengths (SL). Maximal Ca(2+)-activated force and Ca(2+) sensitivity of force were greater at longer SL, such that more force was produced at a given Ca(2+) concentration. Sudden stretch of myocardium during an otherwise isometric contraction resulted in a concomitant increase in force that quickly decayed to a minimum and was followed by a delayed development of force, i.e., stretch activation, to levels greater than prestretch force. At both maximal and submaximal activations, increased SL significantly reduced the initial rate of force decay following stretch; at submaximal activations (but not at maximal) the rate of delayed force development was accelerated. This combination of mechanical effects of increased SL would be expected to increase force generation during systolic ejection in vivo and prolong the period of ejection. These results suggest that sarcomere length dependence of stretch activation contributes to the steepness of the Frank-Starling relationship in living myocardium.  相似文献   

12.
Mean duration of heart period (DHP chi) and its standard deviation (SD), indicating heart arrhythmia and significantly correlating with DHP chi, decreased with stepwise increase of dynamic muscular work on a bicycle ergometer and static muscular work of the right upper arm flexor beyond the limit of permanent performance. This correlation, however, can be understood globally only, since the decrease of DHP chi and SD was not always continuous, but frequently changing, with alterations of increase and decrease from step to step of dynamic work load and from minute to minute of static muscular strain. This concerned particularly SD. A continuous decrease of DHP chi in dynamic muscular work was obtained only by load differences of 40 W, not by differences of 10 or 20 W. A more continuous decrease of SD was also noted during greater load-differences. The significant correlation of DHP chi and SD was lost at a load-difference of 10 W on the 60 W-step and at a load-difference of 40 W on the 180 W-step. Great loads caused at the same load-step less frequent variations of DHP chi, not of SD, than little loads. If no preceding work took place, a contary reaction of DHP chi and SD was noted often at the first load-step. Static work with greater holding force caused a more continuous decrease of DHP chi, in a lower degree of SD, than static work with lower holding force. DHP chi decreased mainly in the first minute of strain. The adjustment of mean heart rate and heart arrhythmia on a level corresponding to increase of load is influenced essentially by the difference of muscular strain appearing between two periods of work load or periods of holding. The regulation of the mean duration of heart period and of heart arrhythmia does not necessarily depend on each other.  相似文献   

13.
Previous fiber-optic studies in humans have demonstrated narrowing of the glottic aperture in expiration during application of expiratory resistive loads. Nine healthy subjects were studied to determine the effect of expiratory resistive loads on the electromyographic activity of the thyroarytenoid (TA) muscle, a vocal cord adductor. Four of the nine subjects also underwent the application of inspiratory resistive loads and voluntary prolongation of either inspiratory (TI) or expiratory (TE) time. TA activity was recorded by intramuscular hooked-wire electrodes. During quiet breathing in all subjects, the TA was phasically active on expiration and often tonically active throughout the respiratory cycle. TA expiratory activity progressively increased with increasing levels of expiratory load. Inspiratory loads resulted in increased TA "inspiratory" activity. Voluntary prolongation of TE to times similar to those reached during loaded breathing induced increases in TA expiratory activity similar to those reached during the loaded state. Voluntary prolongation of TI was associated with an increase in TA inspiratory activity. Similar increases in TI during inspiratory loading or voluntary conditions were associated with comparable increases in TA inspiratory activity in three of the four subjects. In conclusion, increased activation of TA during the application of expiratory resistive loads implies that the reported narrowing of glottic aperture during expiratory loading is an active phenomenon. Changes in activation of the TA with resistive loads appear to be related to changes in respiratory pattern.  相似文献   

14.
Summary A pot experiment has been made with oats fertilized with increasing amounts of calcium nitrate, phosphorus, and various combinations of these. The yield of dry matter and the content of phosphorus, potassium, total nitrogen, soluble nitrogen, peptide nitrogen, and nitrate nitrogen were determined on three separate occasions during the growing period.The number of tillers was increased to a certain extent by nitrogen and then decreased again with further applications. Phosphorus alone had no influence, but a positive interaction between phosphorus and nitrogen on the number of tillers was observed. Nitrogen increased the number of seeds per spikelet and the percentage of grain.Except at maturity the content of potassium followed the content of total nitrogen, the percentage of which increased with increasing nitrogen supply. The content of nitrate nitrogen decreased during the growing period and at maturity was decreased by increasing phosphorus supply.As a percentage of the total nitrogen, the peptide nitrogen and soluble non-nitrate nitrogen in the straw decreased with increasing nitrogen supply. Peptide nitrogen increased at maturity. When the phosphorus was added with a heavy dressing of calcium nitrate, the percentage and the yield of protein nitrogen seemed to increase.  相似文献   

15.
Plasma testosterone, noradrenaline, and adrenaline concentrations during three bicycle ergometer tests of the same total work output (2160 J X kg-1) but different intensity and duration were measured in healthy male subjects. Tests A and B consisted of three consecutive exercise bouts, lasting 6 min each, of either increasing (1.5, 2.0, 2.5 W X kg-1) or constant (2.0, 2.0, 2.0 W X kg-1) work loads, respectively. In test C the subjects performed two exercise bouts each lasting 4.5 min, with work loads of 4.0 W X kg-1. All the exercise bouts were separated by 1-min periods of rest. Exercise B of constant low intensity resulted only in a small increase in plasma noradrenaline concentration. Exercise A of graded intensity caused an increase in both catecholamine levels, whereas, during the most intensive exercise C, significant elevations in plasma noradrenaline, adrenaline and testosterone concentrations occurred. A significant positive correlation was obtained between the mean value of plasma testosterone and that of adrenaline as well as noradrenaline during exercise. It is concluded that both plasma testosterone and catecholamine responses to physical effort depend more on work intensity than on work duration or total work output.  相似文献   

16.
Five healthy males exercised progressively with small 2-min increments in work load. We measured inspiratory drive (occlusion pressure, P0.1), pulmonary resistance (RL), dynamic pulmonary compliance (Cdyn), transdiaphragmatic pressure (Pdi), and diaphragmatic electromyogram (EMGdi). Minute ventilation (VE), mean inspiratory flow rate (VT/TI), and P0.1 all increased exponentially with increased work load, but P0.1 increased at a faster rate than did VT/TI or VE. Thus effective impedance (P0.1/VT/TI) rose throughout exercise. The increasing P0.1 was mostly due to augmented Pdi and coincided with increased EMGdi during this initial portion of inspiration. We found no consistent change in RL or Cdyn throughout exercise. With He breathing (80% He-20% O2), RL was reduced at all work loads; P0.1 fell in comparison with air-breathing values and VE, VT, and VT/TI rose in moderate and heavy work; and P0.1/VT/TI was unchanged with increasing exercise loads. Step reductions in gas density at a constant work load of any intensity showed an immediate reduction in the rate of rise of EMGdi and Pdi followed by increased VT/TI, breathing frequency, and hypocapnia. These changes were maintained during prolonged periods of unloading and were immediately reversible on return to air breathing. These data are consistent with the existence of a reflex effect on the magnitude of inspiratory neural drive during exercise that is sensitive to the load presented by the normal mechanical time constant of the respiratory system. This "load" is a significant determinant of the hyperpneic response and thus of the maintenance of normocapnia during exercise.  相似文献   

17.
The goal of this work was to investigate how internal and external forces acting on DNA affect the rate of genome ejection from bacteriophage lambda after the ejection is triggered in vitro by a lambda receptor. The rate of ejection was measured with time-resolved static and dynamic light scattering, while varying such parameters as temperature and packaged DNA length, as well as adding DNA-binding proteins to the host solution. We found that temperature has a strong effect on the ejection rate, with an exponential increase of the initial ejection rate as a function of temperature. This can possibly be explained by the temperature-induced conformational changes in the tail pore-forming proteins where the "open" conformation dominates over "closed", at elevated temperatures. The DNA length also had an effect on initial ejection rate, with a nearly linear dependence comparing the three different genomes (37.7, 45.7 and 48.5 kb DNA), with faster ejection rate for longer genomes. Since the initial rate of ejection increases in an almost direct relationship with the length of the genome, the total time needed to eject DNA completely appeared to be nearly constant for all three DNA length phage mutants. The increased initial rate of ejection with increasing DNA length is due to the increased DNA bending and inter-strand repulsion forces for the longer DNA chains. Finally, we also show that addition of non-specific DNA-binding proteins (HU and DNase I) increases the rate of ejection by exerting additional "pulling" forces on the DNA that is being ejected.  相似文献   

18.
The objective of this study was to elucidate the impact of physical activity during the growth period as well as on oxidative stress and antioxidative potential in adulthood. The experimental animals used were four-week old male Wistar rats, which were randomly divided into three groups. The exercise loads were as follows: control (CON), treadmill exercise (TE), and jumping exercise (JE). The exercise was performed at the same time of day, at a frequency of five days per week, for eight weeks. Derivatives of reactive oxygen metabolites (d-ROSs) and biological antioxidant potential (BAP) were measured during periods of rest prior to commencement of the experiment and after the experiment. Analysis was conducted using a Wilcoxon signed-rank test and Schaffer’s multiple comparison procedure and the significance level was set at p?相似文献   

19.
Summary Semiquantitative electron-microscopic observations on the pineal gland of dd-mice were carried out to determine whether 24-h rhythms exist in pinealocytes, pericapillary and intercellular spaces and capillary endothelial cells. Nuclear and cytoplasmic areas of pinealocytes and the area of condensed chromatin in pinealocytes showed inversely related circadian rhythms; the former two increased, whereas the latter decreased, during the light period. The extent of pericapillary and wide intercellular spaces exhibited 24-h changes, with an increase and decrease occurring during the light period and the dark period, respectively. The cross-sectional area of endothelial cells decreased and the number of fenestrae increased during the light period; this was reversed during the dark period. The results suggest that the increase in the nuclear and cytoplasmic areas of pinealocytes, the area of pericapillary and wide intercellular spaces and the number of fenestrae, and the decrease in the area of condensed chromatin and endothelial cells during the light period may be related to an increase in synthetic activity of pinealocytes in the mouse.  相似文献   

20.
In vitro CO2 dissociation curves for oxygenated whole blood were determined in 19 healthy male subjects at rest and during submaximal and maximal bicycle work. Hemoglobin concentration and blood lactate increased with increasing work load and accordingly buffer value of the whole blood increased while bicarbonate and Base Excess (BE) decreased, resulting in a downward shift of the CO2 dissociation curve during exercise. Despite the marked increase in buffer values of the blood, the slopes of the CO2 dissociation curves during exercise were found to be about the same as those obtained at rest. It was inferred that the increasing effect of increased buffer value, on the dissociation slope, was essentially compensated by the decreasing effect of diminished bicarbonate content. The advantages of this relatively constant CO2 dissociation slope for the indirect measurement of cardiac output by the Fick principle are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号