首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photoinhibition of the light-induced Photosystem I (PS I) electron transfer activity from the reduced dichlorophenol indophenol to methyl viologen was studied. PS I preparations with Chl/P700 ratios of about 180 (PS I-180), 100 (PS I-100) and 40 (PS I(HA)-40) were isolated from spinach thylakoid membranes by the treatments with Triton X-100, followed by sucrose density gradient centrifugation and hydroxylapatite column chromatography. White light irradiation (1.1 × 104E m–2 s–1) of PS I-180 for 2 hours bleached 50% of the chlorophyll and caused a 58% decrease in the electron transfer activity with virtually no loss of the primary donor, P700. The flash-induced absorbance change showed the decay phase with a half time of about 10 s that was attributed to the P700 triplet, suggesting that the photoinhibitory light treatment caused the destruction of the PS I acceptor(s), Fx and possibly A1. PS I-100 was similarly photobleached by the irradiation and the electron transfer activity decreased. There was, however, no apparent photoinhibition of the electron transport activity in PS I(HA)-40. Photoinhibition similar to that seen in PS I-180 also occurred in membrane fragments that were isolated without any detergent from a PS II-deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. PS I-180 was not photoinhibited under anaerobic conditions. The production of superoxide and fatty acid hydroperoxide during white light irradiation was significantly greater in PS I-180 than in PS I(HA)-40. The mechanism of photoinhibition in PS I preparations is discussed in relation to the formation of toxic oxygen molecules.Abbreviations A0,A1 primary and secondary electron acceptors of PS I - CD circular dichroism - DCPIP 2,6-dichlorophenol indophenol - FA, FB, FX iron-sulfur centers A, B, X - HA hydroxylapatite - LHCI lightharvesting complex of PS I - MDA malondialdehyde - MV methyl viologen - Na-Asc sodium L-ascorbate - P700 primary electron donor of PS I - PFD photon flux density - PS I-A and PS I-B psaA and psaB gene products - TBA thiobarbituric acid  相似文献   

2.
3.
Energy trapping in Photosystem I (PS I) was studied by time-resolved fluorescence spectroscopy of PS II-deleted Chl b-minus thylakoid membranes isolated from site-directed mutants of Chlamydomonas reinhardtii with specific amino acid substitutions of a histidine ligand to P700. In vivo the fluorescence of the PS I core antenna in mutant thylakoids with His-656 of PsaB replaced by asparagine, serine or phenylalanine is characterized by an increase in the lifetime of the fast decay component ascribed to the energy trapping in PS I (25 ps in wild type PS I with intact histidine-656, 50 ps in the mutant PS I with asparagine-656 and 70 ps in the mutant PS I with phenylalanine-656). Assuming that the excitation dynamics in the PS I antenna are trap-limited, the increase in the trapping time suggests a decrease in the primary charge separation rate. Western blot analysis showed that the mutants accumulate significantly less PS I than wild type. Spectroscopically, the mutations lead to a decrease in relative quantum yield of the trapping in the PS I core and increase in relative quantum yield of the fluorescence decay phase ascribed to uncoupled chlorophyll–protein complexes which suggests that improper assembly of PS I and LHC in the mutant thylakoids may result in energy uncoupling in PS I.  相似文献   

4.
By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and birch (Betula pendula Roth.) leaves. PS I donor side carriers were first oxidized under FRL, electrons were then allowed to accumulate on the PS I donor side during dark intervals of increasing length. After each dark interval the electrons were removed (titrated) by FRL. The kinetics of the 820 nm signal during the oxidation of the PS I donor side was modeled assuming redox equilibrium among the PS I donor pigment (P700), plastocyanin (PC), and cytochrome f plus Rieske FeS (Cyt f + FeS) pools, considering that the 820 nm signal originates from P700+ and PC+. The analysis yielded the pool sizes of P700, PC and (Cyt f + FeS) and associated redox equilibrium constants. PS I density varied between 0.6 and 1.4 μmol m−2. PS II density (measured as O2 evolution from a saturating single-turnover flash) ranged from 0.64 to 2.14 μmol m−2. The average electron storage capacity was 1.96 (range 1.25 to 2.4) and 1.16 (range 0.6 to 1.7) for PC and (Cyt f + FeS), respectively, per P700. The best-fit electrochemical midpoint potential differences were 80 mV for the P700/PC and 25 mV for the PC/Cyt f equilibria at 22 °C. An algorithm relating the measured 820 nm signal to the redox states of individual PS I donor side electron carriers in leaves is presented. Applying this algorithm to the analysis of steady-state light response curves of net CO2 fixation rate and 820 nm signal shows that the quantum yield of PS I decreases by about half due to acceptor side reduction at limiting light intensities before the donor side becomes oxidized at saturating intensities. Footnote: This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The triplet state of isolated reaction centers of Rhodopseudomonas sphaeroides R-26 has been studied by fluorescence-detected electron spin resonance in zero magnetic field (FDMR) at 4.2 K. The sign of the FDMR resonance monitored at the long-wavelength fluorescence band is positive (fluorescence increase); this confirms the earlier interpretation (Hoff, A.J. and Gorter de Vries, H. (1978) Biochim. Biophys. Acta 503, 94–106) that the negative sign of the FDMR resonance of the reaction center triplet state in whole bacterial cells is caused by resonant transfer of the singlet excitations from the antenna pigments to the trap. By monitoring the FDMR response as a function of the wavelength of fluorescence, we have recorded microwave-induced fluorescence spectra. In addition to the positive microwave-induced fluorescence band peaking at 935 nm, at 905 nm a negative band was found. The resonant microwave frequencies for these two bands, i.e., the values of the zero-field splitting parameters |D| and |E| of the triplet state being monitored, were different, those of the 905 nm microwave-induced fluorescence band being identical to the resonant microwave frequencies measured with absorption-detected zero-field resonance (Den Blanken, H.J., Van der Zwet, G.P. and Hoff, A.J. (1982) Chem. Phys. Lett. 85, 335–338), a technique that monitors the bulk properties of the sample. From this result and its negative sign, we tentatively attribute the 905 nm microwave-induced fluorescence band to a small (possibly less than 1%) fraction of antenna bacteriochlorophylls that are in close contact with the trap. The positive 935 nm microwave-induced fluorescence band with resonant microwave frequencies deviating from the bulk material is ascribed to a minority of primary donor bacteriochlorophyll dimers, which have a higher than normal fluorescence yield because of a somewhat slower charge-separation reaction. Is it likely that practically all long-wavelength fluorescence of isolated reaction centers stems from such impaired reaction centers.  相似文献   

6.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

7.
The effect of elevated temperature on electron flow to plastoquinone pool and to PSI from sources alternative to PSII was studied in barley (Hordeum vulgare L.) and maize (Zea mays L.) leaves. Alternative electron flow was characterized by measuring variable fluorescence of chlorophyll and absorption changes at 830 nm that reflect redox changes of P700, the primary electron donor of PSI. The treatment of leaves with elevated temperature resulted in a transient increase in variable fluorescence after cessation of actinic light. This increase was absent in leaves treated with methyl viologen (MV). The kinetics of P700+ reduction in barley and maize leaves treated with DCMU and MV exhibited two exponential components. The rate of both components markedly increased with temperature of the heat pretreatment of leaves when the reduction of P700+ was measured after short (1 s) illumination of leaves. The acceleration of both kinetic components of P700+ reduction by high-temperature treatment was much less pronounced when P700+ reduction rate was measured after illumination of leaves for 1 min. Since the treatment of leaves with DCMU and MV inhibited both the electron flow to PSI from PSII and ferredoxin-dependent cycling of electrons around PSI, the accelerated reduction of P700+ indicated that high temperature treatment activated electron flow to PSII from reductants localized in the chloroplast stroma. We conclude that the lesser extent of activation of this process by elevated temperature after prolonged illumination of heat-inhibited leaves is caused by depletion of the pool stromal reductants in light due to photoinduced electron transfer from these reductants to oxygen.  相似文献   

8.
The triplet state of the carotenoid peridinin, populated by triplet-triplet energy transfer from photoexcited chlorophyll triplet state, in the reconstituted Peridinin-Chlorophyll a-protein, has been investigated by ODMR (Optically detected magnetic resonance), and pulse EPR spectroscopies. The properties of peridinins associated with the triplet state formation in complexes reconstituted with Chl a and Chl d have been compared to those of the main-form peridinin-chlorophyll protein (MFPCP) isolated from Amphidinium carterae. In the reconstituted samples no signals due to the presence of chlorophyll triplet states have been detected, during either steady state illumination or laser-pulse excitation. This demonstrates that reconstituted complexes conserve total quenching of chlorophyll triplet states, despite the biochemical treatment and reconstitution with the non-native Chl d pigment. Zero field splitting parameters of the peridinin triplet states are the same in the two reconstituted samples and slightly smaller than in native MFPCP. Analysis of the initial polarization of the photoinduced Electron-Spin-Echo detected spectra and their time evolution, shows that, in the reconstituted complexes, the triplet state is probably localized on the same peridinin as in native MFPCP although, when Chl d replaces Chl a, a local rearrangement of the pigments is likely to occur. Substitution of Chl d for Chl a identifies previously unassigned bands at ∼ 620 and ∼ 640 nm in the Triplet-minus-Singlet (T − S) spectrum of PCP detected at cryogenic temperature, as belonging to peridinin.  相似文献   

9.
The peridinin–chlorophyll-a protein (PCP) is a water-soluble light harvesting protein of the dinoflagellate Amphidinium carterae, employing peridinin (Per) as the main carotenoid to fulfil light harvesting and photo-protective functions. Per molecules bound to the protein experience specific molecular surroundings which lead to different electronic and spectral properties. In the refolded N89?L variant PCP (N89?L-RFPCP) a significant part of the intensity on the long wavelength side of the absorption spectrum is shifted to shorter wavelengths due to a significant change in the Per-614 site energy. Since Per-614 has been shown to be the main chlorophyll (Chl) triplet quencher in the protein, and the relative geometry of pigments is not affected by the mutation as verified by X-ray crystallography, this variant is ideally suited to study the dependence of the triplet-triplet energy transfer (TTET) mechanism on the pigment site energy. By using a combination of Optically Detected Magnetic Resonance (ODMR), pulse Electron Paramagnetic Resonance (EPR) and Electron Nuclear DOuble Resonance (ENDOR) we found that PCP maintains the efficient Per-614-to-Chl-a TTET despite the change of Per-614 local energy. This shows the robustness of the photoprotective site, which is very important for the protection of the system.  相似文献   

10.
Lens α-crystallin is an oligomeric protein with a molecular mass of 500–1000 kDa and a polydispersed assembly. It consists of two types of subunits, αA and αB, each with a molecular mass of 20 kDa. The subunits also form homo-oligomers in some other tissues and in vitro. Their quaternary structures, which are dynamic and characterized by subunit exchange, have been studied by many techniques, including fluorescence resonance energy transfer (FRET) and mass spectrometry analysis. The proposed mechanism of subunit exchange has been either by dissociation/association of monomeric subunits or by rapid equilibrium between oligomers and suboligomers. To explore the nature of subunit exchange further, we performed additional FRET measurements and analyses using a fluorescent dye-labeled W9F αA-crystallin as the acceptor probe and Trp in other crystallins (wild-type and R116C αA, wild-type and R120G αB, wild-type and Q155* βB2) as the donor probe and calculated the transfer efficiency, Förster distance, and average distance between two probes. The results indicate only slight decreased efficiency and increased distance between two probes for the R116C αA and R120G αB mutations despite conformational changes.  相似文献   

11.
The photoexcited triplet state of the carotenoid peridinin in the high-salt peridinin-chlorophyll a-protein (HSPCP) of the dinoflagellate Amphidinium carterae was investigated by ODMR (optically detected magnetic resonance), pulse EPR and pulse ENDOR spectroscopies. The properties of peridinins associated to the triplet state formation in HSPCP were compared to those of peridinins involved in triplet state population in the main-form peridinin-chlorophyll protein (MFPCP), previously reported. In HSPCP no signals due to the presence of chlorophyll triplet state have been detected, during either steady-state illumination or laser-pulse excitation, meaning that peridinins play the photo-protective role with 100% efficiency as in MFPCP. The general spectroscopic features of the peridinin triplet state are very similar in the two complexes and allow drawing the conclusion that the triplet formation pathway and the triplet localization in one specific peridinin in each subcluster are the same in HSPCP and MFPCP. However some significant differences also emerged from the analysis of the spectra. Zero field splitting parameters of the peridinin triplet states are slightly smaller in HSPCP and small changes are also observed for the hyperfine splittings measured by pulse ENDOR and assigned to the β-protons belonging to one of the two methyl groups present in the conjugated chain, (aiso = 10.3 MHz in HSPCP vs aiso = 10.6 MHz in MFPCP). The differences are explained in terms of local distortion of the tails of the conjugated chains of the peridinin molecules, in agreement with the conformational data resulting from the X-ray structures of the two complexes.  相似文献   

12.
The origin of the long-wavelength chlorophyll (Chl) absorption (peak > 680 nm) and fluorescence emission (peak > 685 nm) has been investigated on Scenedesmus mutants (C-2A-series, lacking the ability to synthesize chlorophyll in the dark) grown at 0.3 (LL), 10 (ML) and 240 µE s–1 m–2(HL). LL cells are arrested in an early greening state; consequently, Chl availability determines the phenotype. LL thylakoids are totally lacking long-wavelength Chl; nonetheless, PS I and PS II are fully functional. Gel electrophoresis and Western blots indicate that four out of seven resolved LHC polypeptides seem to require a high Chl availability for assembly of functional chlorophyll-protein complexes. The PS I core-complex of ML and HL thylakoids contains long-wavelength chlorophylls, but in the PS I core-complex of LL thylakoids these pigments are lacking. We conclude that long-wavelength pigments are only present in the PS I core in the case of high Chl availability. The following hypothesis is discussed: Chl availability determines not only the LHC polypeptide pattern, but also the number of bound Chl molecules per individual pigment-protein complex. Chl-binding at non-obligatory, peripheral sites of the pigment-protein complex results in long-wavelength Chl. In the case of low Chl availability, these sites are not occupied and, therefore, the long-wavelength Chl is absent.  相似文献   

13.
Troponin (Tn), in association with tropomyosin (Tm), plays a central role in the calcium regulation of striated muscle contraction. Fluorescence resonance energy transfer (FRET) between probes attached to the Tn subunits (TnC, TnI, TnT) and to Tm was measured to study the spatial relationship between Tn and Tm on the thin filament. We generated single-cysteine mutants of rabbit skeletal muscle α-Tm, TnI and the β-TnT 25-kDa fragment. The energy donor was attached to a single-cysteine residue at position 60, 73, 127, 159, 200 or 250 on TnT, at 98 on TnC and at 1, 9, 133 or 181 on TnI, while the energy acceptor was located at 13, 146, 160, 174, 190, 209, 230, 271 or 279 on Tm. FRET analysis showed a distinct Ca2+-induced conformational change of the Tm-Tn complex and revealed that TnT60 and TnT73 were closer to Tm13 than Tm279, indicating that the elongated N-terminal region of TnT extends beyond the beginning of the next Tm molecule on the actin filament. Using the atomic coordinates of the crystal structures of Tm and the Tn core domain, we searched for the disposition and orientation of these structures by minimizing the deviations of the calculated FRET efficiencies from the observed FRET efficiencies in order to construct atomic models of the Tn-Tm complex with and without bound Ca2+. In the best-fit models, the Tn core domain is located on residues 160-200 of Tm, with the arrowhead-shaped I-T arm tilting toward the C-terminus of Tm. The angle between the Tm axis and the long axis of TnC is ∼ 75° and ∼ 85° with and without bound Ca2+, respectively. The models indicate that the long axis of TnC is perpendicular to the thin filament without bound Ca2+, and that TnC and the I-T arm tilt toward the filament axis and rotate around the Tm axis by ∼ 20° upon Ca2+ binding.  相似文献   

14.
Chlorophyll (Chl) a in a cyanobacterium Synechocystis sp. PCC 6803 was replaced with di-vinyl (DV)-Chl a by knock-out of the specific gene (slr1923), responsible for the reduction of a 8-vinyl group, and optical and photochemical properties of purified photosystem (PS) II complexes (DV-PS II) were investigated. We observed differences in the peak wavelengths of absorption and fluorescence spectra; however, replacement of Chl a with DV-Chl a had limited effects. On the contrary, photochemical reactions were highly sensitive to high-light treatments in the mutant. Specifically, DV-Chl a was rapidly bleached under high-light conditions, and we detected significant dissociation of complexes and degradation of D1 proteins (PsbA). By comparing the SDS-PAGE patterns observed in this study to those observed in spinach chloroplasts, this degradation is assigned to the acceptor-side photoinhibition. The delayed fluorescence in the nanosecond time region at 77 K was suppressed in DV-PS II, possibly increasing triplet formation of Chl molecules. Our findings provide insight into the evolutionary processes of cyanobacteria. The effects of pigment replacement on the optimization of reactions are discussed.  相似文献   

15.
The dynamics of energy and charge transfer in the Photosystem II reaction center complex is an area of great interest today. These processes occur on a time scale ranging from femtoseconds to tens of picoseconds or longer. Steady-state and ultrafast spectroscopy techniques have provided a great deal of quantitative and qualitative data that have led to varied interpretations and phenomenological models. More recently, microscopic models that identify specific charge separated states have been introduced, and offer more insight into the charge transfer mechanism. The structure and energetics of PS II reaction centers are reviewed, emphasizing the effects on the dynamics of the initial charge transfer. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In the absence of an accurate structural model, the excited state dynamics of energy-transferring systems are often modeled using lattice models. To demonstrate the validity and other potential merits of such an approach we present the results of the modeling of the energy transfer and trapping in Photosystem I based upon the 2.5 A structural model, and show that these results can be reproduced in terms of a lattice model with only a few parameters. It has recently been shown that at room temperature the dynamics of a hypothetical Photosystem I particle, not containing any red chlorophylls (chls), are characterized by a longest (trapping) lifetime of 18 ps. The structure-based modeling of the dynamics of this particle yields an almost linear relationship between the possible values of the intrinsic charge-separation time at P700, 1/gamma, and the average single-site lifetime in the antenna, tauss. Lattice-based modeling, using the approach of a perturbed two-level model, reproduces this linear relation between tauss and 1/gamma. Moreover, this approach results in a value of the (modified) structure-function corresponding to a structure exhibiting a mixture of the characteristics of both a square and a cubic lattice, consistent with the structural model. These findings demonstrate that the lattice model describes the dynamics of the system appropriately. In the lattice model, the total trapping time is the sum of the delivery time to the reaction center and the time needed to quench the excitation after delivery. For the literature value of tauss=150 fs, both these times contribute almost equally to the total trapping time of 18 ps, indicating that the system is neither transfer- nor trap-limited. The value of approximately 9 ps for the delivery time is basically equal to the excitation-transfer time from the bulk chls to the red chls in Synechococcus elongatus, indicating that energy transfer from the bulk to the reaction center and to the red chls are competing processes. These results are consistent with low-temperature time-resolved and steady-state fluorescence measurements. We conclude that lattice models can be used to describe the global energy-transfer properties in complex chromophore networks, with the advantage that such models deal with only a few global, intuitive parameters rather than the many microscopic parameters obtained in structure-based modeling.  相似文献   

17.
We present an optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopic study on the quenching of photo-induced chlorophyll triplet states by carotenoids, in the intrinsic light-harvesting complex (LHC) from the dinoflagellate Amphidinium carterae.Two carotenoid triplet states, differing in terms of optical and magnetic spectroscopic properties, have been identified and assigned to peridinins located in different protein environment. The results reveal a parallelism with the triplet-triplet energy transfer (TTET) process involving chlorophyll a and luteins observed in the LHC-II complex of higher plants. Starting from the hypothesis of a conserved alignment of the amino acid sequences at the cores of the LHC and LHC-II proteins, the spin-polarized time-resolved EPR spectra of the carotenoid triplet states of LHC have been calculated by a method which exploits the conservation of the spin momentum during the TTET process. The analysis of the spectra shows that the data are compatible with a structural model of the core of LHC which assigns the photo-protective function to two central carotenoids surrounded by the majority of Chl a molecules present in the protein, as found in LHC-II. However, the lack of structural data, and the uncertainty in the pigment composition of LHC, leaves open the possibility that this complex posses a different arrangement of the pigments with specific centers of Chl triplet quenching.  相似文献   

18.
H.J. Den Blanken  A.J. Hoff 《BBA》1982,681(3):365-374
We have recorded triplet optical absorption-difference spectra of the reaction center triplet state of isolated reaction centers from Rhodopseudomonas sphaeroides R-26 and Rps. viridis with optical absorption-detected electron spin resonance in zero magnetic field (ADMR) at 1.2 K. This technique is one to two orders of magnitude more sensitive than conventional flash absorption spectroscopy, and consequently allows a much higher spectral resolution. Besides the relatively broad bleachings and appearances found previously (see, e.g., Shuvalov V.A. and Parson W.W. (1981) Biochim. Biophys. Acta 638, 50–59) we have found strong, sharp oscillations in the wavelength regions 790–830 nm (Rps. sphaeroides) and 810–890 nm (Rps. viridis). For Rps. viridis these features are resolved into two band shifts (a blue shift at about 830 nm and a red shift at about 855 nm) and a strong, narrow absorption band at 838 nm. For Rps. sphaeroides R-26 the features are resolved into a red shift at about 810 nm and a strong absorption band at 807 nm. We conclude that the appearance of the absorption bands at 807 and 838 nm, respectively, is due to monomeric bacteriochlorophyll. Apparently, the exciton interaction between the pigments constituting the primary donor is much weaker in the triplet state than in the singlet state, and at low temperature the triplet is localized on one of the bacteriochlorophylls on an optical time scale. The fact that for Rps. sphaeroides the strong band shift and the monomeric band found at 1.2 K are absent at 293 K and very weak at 77 K indicates that these features are strongly temperature dependent. It seems, therefore, premature to ascribe the temperature dependence between 293 and 77 K of the intensity of the triplet absorption-difference spectrum at 810 nm (solely) to a delocalization of the triplet state on one of the accessory bacteriochlorophyll pigments.  相似文献   

19.
A series of mutations have been introduced at residue 168 of the L-subunit of the reaction centre from Rhodobacter sphaeroides. In the wild-type reaction centre, residue His L168 donates a strong hydrogen bond to the acetyl carbonyl group of one of the pair of bacteriochlorophylls (BChl) that constitutes the primary donor of electrons. Mutation of His L168 to Phe or Leu causes a large decrease in the mid-point redox potential of the primary electron donor, consistent with removal of this strong hydrogen bond. Mutations to Lys, Asp and Arg cause smaller decreases in redox potential, indicative of the presence of weak hydrogen bond and/or an electrostatic effect of the polar residue. A spectroscopic analysis of the mutant complexes suggests that replacement of the wild-type His residue causes a decrease in the strength of the coupling between the two primary donor bacteriochlorophylls. The X-ray crystal structure of the mutant in which His L168 has been replaced by Phe (HL168F) was determined to a resolution of 2.5 A, and the structural model of the HL168F mutant was compared with that of the wild-type complex. The mutation causes a shift in the position of the primary donor bacteriochlorophyll that is adjacent to residue L168, and also affects the conformation of the acetyl carbonyl group of this bacteriochlorophyll. This conformational change constitutes an approximately 27 degrees through-plane rotation, rather than the large into-plane rotation that has been widely discussed in the context of the HL168F mutation. The possible structural basis of the altered spectroscopic properties of the HL168F mutant reaction centre is discussed, as is the relevance of the X-ray crystal structure of the HL168F mutant to the possible structures of the remaining mutant complexes.  相似文献   

20.
The chlorophyll b-containing alga Mantoniella squamata was analyzed with respect to its capacity to balance the energy distribution from the light-harvesting antenna to photosystem I or photosystem II. It was shown, that this alga is unable to alter the absorption cross section of the two photosystems in terms of short-time regulations (state transitions). The energy absorbed by the LHC, which contains 60% of total photosynthetic pigments, is transferred to both photosystems without any preference. The stoichiometry of the two photosystems is found to be extremely unequal and variable during light adaptation. In high light, the molar ratio of P-680 per P-700 is found to be two, whereas under low light conditions this ratio accounts to nearly four. This very unbalanced stoichiometry of the reaction centers gives some new insights into the concept of the photosynthetic unit as well as in the importance of the regulation of the energy distribution. It is assumed that the high concentration of photosystem II can be understood as a mechanism to prevent the overexcitation of photosystem I. In addition, the changes im membrane protein pattern are not accompanied by variations in the ratio of appressed to nonappressed membranes as probed by ultrastructural analysis. It is suggested that the thylakoids are organized like a homogenous pigment bed. The lack of state transitions can be interpreted as a consequence of this unusual membrane morphology.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein of PSII - CPl P-700 chlorophyll a-protein - CPD Chlorophyll packing density index - cyt f cytochrome f - FP free pigments - LHC light-harvesting complex - Pmax light saturated photosynthetic rates per chlorophyll - n number of experiments - PQ plastoquinone - PS photosystem - PSU photosynthetic unit - QE non-photochemical quenching - QQ photochemical quenching  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号