首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

2.
Strictly conserved charged residues among polygalacturonases (Asp-180, Asp-201, Asp-202, His-223, Arg-256, and Lys-258) were subjected to site-directed mutagenesis in Aspergillus niger endopolygalacturonase II. Specific activity, product progression, and kinetic parameters (K(m) and V(max)) were determined on polygalacturonic acid for the purified mutated enzymes, and bond cleavage frequencies on oligogalacturonates were calculated. Depending on their specific activity, the mutated endopolygalacturonases II were grouped into three classes. The mutant enzymes displayed bond cleavage frequencies on penta- and/or hexagalacturonate different from the wild type endopolygalacturonase II. Based on the biochemical characterization of endopolygalacturonase II mutants together with the three-dimensional structure of the wild type enzyme, we suggest that the mutated residues are involved in either primarily substrate binding (Arg-256 and Lys-258) or maintaining the proper ionization state of a catalytic residue (His-223). The individual roles of Asp-180, Asp-201, and Asp-202 in catalysis are discussed. The active site topology is different from the one commonly found in inverting glycosyl hydrolases.  相似文献   

3.
Although it is energetically extremely unfavorable to have charged amino acid residues of a polypeptide in the hydrophobic environment of the membrane phospholipid bilayer, a few such charged residues are found in membrane-spanning regions of membrane proteins. Ion pairs (salt bridges) would be much more stable in low dielectric media than single ionized residues. This paper provides indirect evidence for a salt bridge between Asp-240 and Lys-319 in the lactose carrier of Escherichia coli. When Asp-240 was changed to alanine by site-directed mutagenesis, there was a loss of the ability to accumulate methyl-beta-D-thiogalactopyranoside (TMG), melibiose, or lactose. Fast-growing revertants were isolated on melibiose minimal agar plates. Two second-site revertants were isolated: Asp-240-->Ala plus Gly-268-->Val and Asp-240-->Ala plus Lys-319-->Gln. These revertants showed extremely poor accumulation of TMG, melibiose, and lactose, but showed significant "downhill" lactose entry into beta-galactosidase-containing cells with sugar concentrations of 2 and 5 mM. It is concluded that there is some important interaction between Asp-240 and Lys-319, possibly a salt bridge.  相似文献   

4.
Binding of agonists to nicotinic acetylcholine receptors generates a sequence of conformational changes resulting in channel opening. Previously, we have shown that the aspartate residue Asp-266 at the M2-M3 linker of the alpha7 nicotinic receptor is involved in connecting binding and gating. High resolution structural data suggest that this region could interact with the so-called loops 2 and 7 of the extracellular N-terminal region. In this case, certain charged amino acids present in these loops could integrate together with Asp-266 and other amino acids, a mechanism involved in channel activation. To test this hypothesis, all charged residues in these loops, Asp-42, Asp-44, Glu-45, Lys-46, Asp-128, Arg-130, and Asp-135, were substituted with other amino acids, and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Glu-45, Lys-46, and Asp-135 exhibited poor or null functional responses to different nicotinic agonists regardless of significant membrane expression, whereas D128A showed a gain of function effect. Because the double reverse charge mutant K46D/D266K did not restore receptor function, a gating mechanism controlled by the pairwise electrostatic interaction between these residues is not likely. Rather, a network of interactions formed by residues Lys-46, Asp-128, Asp-135, Asp-266, and possibly others appears to link agonist binding to channel gating.  相似文献   

5.
Colicin E1 was altered by oligonucleotide-directed mutagenesis at the site of three charged residues on the COOH side of the 35-residue hydrophobic segment in the channel-forming domain. Asp-509 is one of five conserved acidic residues in the channel domain of colicins A, B, E1, Ia, and Ib and is the first charged residue following the hydrophobic segment, followed by the basic residues Lys-510 and Lys-512. Asp-509 and Lys-512 were changed to amber and ochre stop codons, respectively, while Lys-510 was mutated to a Met codon. Proteins truncated after residue 508 or 511, and missing the last 14 or 11 residues, were obtained from a nonsuppressing cell strain harboring the mutant plasmid while full-length colicin molecules with single residue changes at Asp-509 to Leu, Ser, and Gln, and Lys-512 to Tyr, were obtained by using appropriate suppressor strains. The truncated colicins displayed (i) a low cytotoxicity, approximately 1% of intact wild-type colicin, (ii) 10-fold less in vitro channel activity with liposomes, and (iii) reduced labeling of the colicin in liposomes by a phospholipid photoaffinity probe, showing that one or more of the residues following Asn-511 is necessary for both in vivo and in vitro activity and insertion into the bilayer. (iv) The truncated mutants also displayed an altered conformation at pH 6 that allowed greater binding and activity with liposomes at this pH relative to wild type. The cytotoxicity of single residue substitutions at Asp-509 showed a range of cytotoxicities, wild type greater than Ser-509 greater than Gln-509 greater than Leu-509, although none of these changes greatly affected the in vitro channel activity or pH dependence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The mechanisms underlying the transport of bile acids by apical sodium-dependent bile acid transporter (Asbt) are not well defined. To further identify the functionally relevant residues, thirteen conserved negatively (Asp and Glu) and positively (Lys and Arg) charged residues plus Cys-270 of rat Asbt were replaced with Ala or Gln by site-directed mutagenesis. Seven of the fourteen residues of rat Asbt were identified as functionally important by taurocholate transport studies, substrate inhibition assays, confocal microscopy, and electrophysiological methods. The results showed that Asp-122, Lys-191, Lys-225, Lys-256, Glu-261, and Lys-312,Lys-313 residues of rat Asbt are critical for transport function and may determine substrate specificity. Arg-64 may be located at a different binding site to assist in interaction with non-bile acid organic anions. For bile acid transport by Asbt, Na(+) ion movement is a voltage-dependent process that tightly companied with taurocholate movement. Asp-122 and Glu-261 play a critical role in the interaction of a Na(+) ion and ligand with Asbt. Cys-270 is not essential for the transport process. These studies provide new details about the amino acid residues of Asbt involved in binding and transport of bile acids and Na(+).  相似文献   

7.
Tyr-179 and Lys-183 are likely to be functionally important residues in 11 beta-hydroxysteroid dehydrogenase, as these amino acids are absolutely conserved in all members of the "short chain dehydrogenase" family. We modified these residues by site-directed mutagenesis of rat cDNA and transfected these constructs into CHO cells. A highly but not absolutely conserved residue, Asp-110, was also studied. Mutation of Tyr-179 to Phe or Ser completely abolished enzymatic activity (interconversion of corticosterone and 11-dehydrocorticosterone), as did Lys-183-->Arg. Asp-110-->Asn affected activity only mildly. Tyr-179 and Lys-183 may be directly involved in the catalytic function of this class of enzymes.  相似文献   

8.
A new class of phospholipases A2 that have a lysine at position 49 differ from the more conventional Asp-49 enzymes with respect to the sequential binding of the essential cofactor, calcium, and the substrate, phospholipid, in the formation of the catalytic complex (Maraganore, J.M., Merutka, G., Cho, W., Welches, W., Kézdy, F.J., and Heinrikson, R.L. (1984) J. Biol. Chem. 259, 13839-13843). We report here the complete amino acid sequence of the Lys-49 enzyme from Agkistrodon piscivorus piscivorus. The sequence was determined by automated Edman degradation of the intact, S-carboxymethylcysteinyl protein and of peptides derived therefrom by cleavage with cyanogen bromide, chymotrypsin, trypsin, and endoproteinase Lys-C. Despite several changes at amino acid residues previously considered to be invariant, the Lys-49 enzymes are homologous to the Asp-49 phospholipases. Homology is especially apparent in the following: 1) the pattern of 14 half-cystine residues, 2) conservation of hydrophobic residues which have been shown to encircle the active site, and 3) conservation of Asp-99 and His-48 which have been implicated in the catalytic reaction itself. These observations together with kinetic and binding data imply that the Lys-49 phospholipases have a catalytic mechanism and a three-dimensional architecture similar to those of the Asp-49 enzymes. Modeling of the Lys-49 enzyme based upon the structure of bovine pancreatic phospholipase reveals that the epsilon-amino group of Lys-49 can fit easily in the calcium-binding site and, moreover, that this orientation of a cationic side chain at position 49 could account for the characteristic and novel feature of the Lys-49 phospholipases, i.e. that they are able to form complexes with phospholipid in the absence of calcium.  相似文献   

9.
The melibiose carrier from Escherichia coli is a cation-substrate cotransporter that catalyzes the accumulation of galactosides at the expense of H(+), Na(+), or Li(+) electrochemical gradients. Charged residues on transmembrane domains in the amino-terminal portion of this carrier play an important role in the recognition of cations, while the carboxyl portion of the protein seems to be important for sugar recognition. In the present study, we substituted Lys-377 on helix XI with Val. This mutant carrier, K377V, had reduced melibiose transport activity. We subsequently used this mutant for the isolation of functional second-site revertants. Revertant strains showed the additional substitutions of Val or Asn for Asp-59 (helix II), or Leu for Phe-20 (helix I). Isolation of revertant strains where both Lys-377 and Asp-59 are substituted with neutral residues suggested the possibility that a salt bridge exists between helix II and helix XI. To further test this idea, we constructed three additional site-directed mutants: Asp-59-->Lys (D59K), Lys-377-->Asp (K377D), and a double mutant, Asp-59-->Lys/Lys-377-->Asp (D59K/K377D), in which the position of these charges was exchanged. K377D accumulated melibiose only marginally while D59K could not accumulate. However, the D59K/K377D double mutant accumulated melibiose to a modest level although this activity was no longer stimulated by Na(+). We suggest that Asp-59 and Lys-377 interact via a salt bridge that brings helix II and helix XI close to one another in the three-dimensional structure of the carrier.  相似文献   

10.
A cross-linked complex between bovine NADPH-adrenodoxin reductase (AR) and adrenodoxin (AD) was prepared with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and purified, as described previously [Hara, T. & Kimura, T. (1989) J. Biochem. 105, 594-600]. The covalent complex was S-pyridylethylated and digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase HPLC to identify the cross-linked peptide. Comparison of the HPLC chromatograms of the peptides showed that (i) two tandem peptides (K-4 and K-5) from AD and a peptide (K-1) from AR were missing in the chromatogram of the peptides of the covalent complex and (ii) a single new peak was observed in the chromatogram of the peptides from the covalent complex. Amino acid composition and sequence analyses showed that the newly observed peptide was a covalently cross-linked peptide formed between a peptide K-4-K-5 (Ile-25-Lys-98) derived from AD and a peptide K-1 (Ser-1-Lys-27) derived from AR, in which an amide bond had been formed between the epsilon-amino group of Lys-66 in AD and the gamma-carboxyl group of Glu-4 in AR. These results indicate that the binding site of AR with AD is localized in the amino-terminal part of AR and that of AD with AR is localized around Lys-66 of AD. The six clustered basic amino acid residues (His-24, Lys-27, His-28, His-29, Arg-31, and His-33) present in the amino-terminal portion of AR and the eight clustered acidic amino acid residues (Glu-65, Glu-68, Asp-72, Glu-73, Glu-74, Asp-76, Asp-79, and Asp-86) present in the middle part of AD may play an important role in the complex formation.  相似文献   

11.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

12.
The lacY from Escherichia coli strains 020 and AE43 have been cloned on plasmids which were designated p020-K358T and pAE43-D237N. These lacY mutants contain amino acid substitutions changing Lys-358 to Thr or Asp-237 to Asn, respectively. The charge neutralizing effect of each mutation is associated with a functional defect in melibiose transport which we exploited in order to isolate second site revertants to the melibiose-positive phenotype. Eleven melibiose-positive revertants of p020-K358T were isolated. All contained a second-site mutation converting Asp-237 to a neutral amino acid (8 to Asn, 1 to Gly, and 2 to Tyr). Twelve melibiose-positive revertants of pAE43-D237N were isolated. Two were second-site revertants converting Lys-358 to a neutrally Gln residue, while the remainder directly reverted Asn-237 to the wild-type Asp-237. We conclude that the functional intimate relationship between Asp-237 and Lys-358 suggests that these residues may be closely juxtaposed in three-dimensional space, possibly forming a 'charge-neutralizing' salt bridge.  相似文献   

13.
We examine the role of Lys-377, the only charged residue in helix XI, on the functional mechanism of the Na+-sugar melibiose symporter from Escherichia coli. Intrinsic fluorescence, FRET, and Fourier transform infrared difference spectroscopy reveal that replacement of Lys-377 with either Cys, Val, Arg, or Asp disables both Na+ and melibiose binding. On the other hand, molecular dynamics simulations extending up to 200–330 ns reveal that Lys-377 (helix XI) interacts with the anionic side chains of two of the three putative ligands for cation binding (Asp-55 and Asp-59 in helix II). When Asp-59 is protonated during the simulations, Lys-377 preferentially interacts with Asp-55. Interestingly, when a Na+ ion is positioned in the Asp-55-Asp-59 environment, Asp-124 in helix IV (a residue essential for melibiose binding) reorients and approximates the Asp-55-Asp-59 pair, and all three acidic side chains act as Na+ ligands. Under these conditions, the side chain of Lys-377 interacts with the carboxylic moiety of these three Asp residues. These data highlight the crucial role of the Lys-377 residue in the spatial organization of the Na+ binding site. Finally, the analysis of the second-site revertants of K377C reveals that mutation of Ile-22 (in helix I) preserves Na+ binding, whereas that of melibiose is largely abolished according to spectroscopic measurements. This amino acid is located in the border of the sugar-binding site and might participate in sugar binding through apolar interactions.  相似文献   

14.
In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics.  相似文献   

15.
In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics.  相似文献   

16.
Squalene epoxidase (SE) catalyzes the conversion of squalene to (3S)-2,3-oxidosqualene. Photolabeling and site-directed mutagenesis were performed on recombinant rat SE (rrSE) in order to identify the location of the substrate-binding site and the roles of key residues in catalysis. Truncated 50-kDa rrSE was purified and photoaffinity labeled by competitive SE inhibitor (Ki=18.4 microM), [(3)H]TNSA-Dza. An 8-kDa CNBr/BNPS-skatole peptide was purified and the first 24 amino acids were sequenced by Edman degradation. The sequence PASFLPPSSVNKRGVLLLGDAYNL corresponded to residues 388-411 of the full-length rat SE. Three nucleophilic residues (Lys-399, Arg-400, and Asp-407) were labeled by [(3)H]TNSA-Dza. Triple mutants were prepared in which bulky groups were used to replace the labeled charged residues. Purified mutant enzymes showed lower enzymatic activity and reduced photoaffinity labeling by [(3)H]TNSA-Dza. This constitutes the first evidence as to the identity of the substrate-binding site of SE.  相似文献   

17.
Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5 mm p-nitrophenyl acetate for 5 min to 2 weeks, or with 10 mm p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mm p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mm p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with beta-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 degrees C was 61 +/- 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.  相似文献   

18.
Site-directed mutagenesis of stable adenosine triphosphate synthase   总被引:3,自引:0,他引:3  
Evidence was obtained that four ionizable residues in the alpha and beta subunits of thermophilic ATP synthase (TF0F1), corresponding to Lys-21 and Asp-119 in the MgATP binding segments of adenylate kinase, are essential for the normal catalytic activity. TF0F1 was used because it is the only ATP synthase whose alpha-, beta- and gamma-subunits can be reassembled into an active complex in the absence of both ATP and Mg. Lys-164 and Asp-252 of its beta-subunit were modified to isoleucine and asparagine, respectively, by site-directed mutagenesis using a multifunctional plasmid, and these genes were over-expressed in Escherichia coli. The resulting beta I164 and beta N252 subunits were both noncatalytic after re-assembly into the alpha beta gamma-complex, even though both subunits bound significant amounts of ADP. When Lys-175 and Asp-261 of the alpha-subunit were similarly replaced by isoleucine and asparagine, respectively, the resulting alpha I175 subunit reassembled weakly into an oligomer, while the alpha N261 subunit showed an increased dissociation constant for ADP and was reconstituted into an alpha beta gamma-complex that showed no inter-subunit cooperativity.  相似文献   

19.
RhoGTPases are central switches in all eukaryotic cells. There are at least two known families of guanine nucleotide exchange factors that can activate RhoGTPases: the Dbl-like eukaryotic G nucleotide exchange factors and the SopE-like toxins of pathogenic bacteria, which are injected into host cells to manipulate signaling. Both families have strikingly different sequences, structures, and catalytic core elements. This suggests that they have emerged by convergent evolution. Nevertheless, both families of G nucleotide exchange factors also share some similarities: (a) both rearrange the G nucleotide binding site of RhoGTPases into virtually identical conformations, and (b) two SopE residues (Gln-109SopE and Asp-124SopE) engage Cdc42 in a similar way as equivalent residues of Dbl-like G nucleotide exchange factors (i.e. Asn-810Dbs and Glu-639Dbs). The functional importance of these observations has remained unclear. Here, we have analyzed the effect of amino acid substitutions at selected SopE residues implicated in catalysis (Asp-124SopE, Gln-109SopE, Asp-103SopE, Lys-198SopE, and Gly-168SopE) on in vitro catalysis of G nucleotide release from Cdc42 and on in vivo activity. Substitutions at Asp-124SopE, Gln-109SopE, and Gly-168SopE severely reduced the SopE activity. Slight defects were observed with Asp-103SopE variants, whereas Lys-198SopE was not found to be required in vitro or in vivo. Our results demonstrate that G nucleotide exchange by SopE involves both catalytic elements unique to the SopE family (i.e. 166GAGA169 loop, Asp-103SopE) and amino acid contacts resembling those of key residues of Dbl-like guanine nucleotide exchange factors. Therefore, besides all of the differences, the catalytic mechanisms of the SopE and the Dbl families share some key functional aspects.  相似文献   

20.
The Escherichia coli membrane-bound glucose dehydrogenase (mGDH) as the primary component of the respiratory chain possesses a tightly bound ubiquinone (UQ) flanking pyrroloquinoline quinone (PQQ) as a coenzyme. Several mutants for Asp-354, Asp-466, and Lys-493, located close to PQQ, that were constructed by site-specific mutagenesis were characterized by enzymatic, pulse radiolysis, and EPR analyses. These mutants retained almost no dehydrogenase activity or ability of PQQ reduction. CD and high pressure liquid chromatography analyses revealed that K493A, D466N, and D466E mutants showed no significant difference in molecular structure from that of the wild-type mGDH but showed remarkably reduced content of bound UQ. A radiolytically generated hydrated electron (e(aq)(-)) reacted with the bound UQ of the wild enzyme and K493R mutant to form a UQ neutral semiquinone with an absorption maximum at 420 nm. Subsequently, intramolecular electron transfer from the bound UQ semiquinone to PQQ occurred. In K493R, the rate of UQ to PQQ electron transfer is about 4-fold slower than that of the wild enzyme. With D354N and D466N mutants, on the other hand, transient species with an absorption maximum at 440 nm, a characteristic of the formation of a UQ anion radical, appeared in the reaction of e(aq)(-), although the subsequent intramolecular electron transfer was hardly affected. This indicates that D354N and D466N are prevented from protonation of the UQ semiquinone radical. Moreover, EPR spectra showed that mutations on Asp-466 or Lys-493 residues changed the semiquinone state of bound UQ. Taken together, we reported here for the first time the existence of a semiquinone radical of bound UQ in purified mGDH and the difference in protonation of ubisemiquinone radical because of mutations in two different amino acid residues, located around PQQ. Furthermore, based on the present results and the spatial arrangement around PQQ, Asp-466 and Lys-493 are suggested to interact both with the bound UQ and PQQ in mGDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号