首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
NADH peroxidase (EC 1.11.1.1) previously isolated from Streptococcus faecalis 10C1 has been crystallized. The crystal structure has been solved by multiple isomorphous replacement and solvent-flattening at 3.3 A (1 A = 0.1 nm) resolution. The enzyme forms a tetramer consisting of 4 crystallographically related subunits. The monomer chain fold is in general similar to those of glutathione reductase and lipoamide dehydrogenase. FAD binds in the same region and in a similar conformation as in glutathione reductase. The unusual cysteine-sulfenic acid participating in catalysis is located at the isoalloxazine of FAD.  相似文献   

2.
Anaerobic addition of 0.5 eq of NADH/FAD to the streptococcal NADH oxidase produces a redox form spectrally similar to that obtained with 0.5 eq of dithionite/FAD. The second phase of the titration, however, in addition to reducing the flavin with 1 eq of NADH/FAD, leads to the appearance of a long-wavelength absorbance band centered at 725 nm. Reductive titrations of the enzyme with 3-acetylpyridine-adenine dinucleotide, which has a redox potential 72 mV more positive than that of NADH, yield a similar reduced enzyme species. Dithionite reduction of the NADH oxidase followed by titration with NAD+ partially mimics the long-wavelength absorbance of the NADH-reduced enzyme but also leads to the oxidation of 1 FADH2/dimer. NADH is not formed, however, and a similar result is obtained when the dithionite-reduced oxidase is titrated with the nonreducible substrate analog 3-aminopyridine-adenine dinucleotide. These data indicate that the FADH2 oxidation observed is intramolecular and suggest that the active centers of the two apparently identical subunits/dimer are not equivalent. These results also demonstrate that bound pyridine nucleotides can modulate the redox manifold of the NADH oxidase and, when taken together with the effects of these ligands on pre-steady-state behavior, suggest an important regulatory aspect of the catalytic redox function of this unique flavoprotein.  相似文献   

3.
Association constants were determined for the 1:1 interactions of calcium with NAD+, NADH, NADP+, and NADPH in aqueous systems (pH 7, 25 °C) by use of a calcium-sensitive electrode. The order of binding of calcium to these pyridine nucleotides appears to be NAD+ < NADH < NADP+ < NADPH with association constants of 0.2 × 102, 0.3 × 102, 0.9 × 102, and 2 × 102, respectively. Calorimetric experiments revealed that all of these interactions are endothermic with enthalpy changes of 1, 2, 2, and 3 kcal/mol, respectively.  相似文献   

4.
The crystal structure of NADH peroxidase (EC 1.11.1.1) from Streptococcus faecalis 10C1 (Enterococcus faecalis) has been refined to a resolution of 2.16 A using the simulated annealing method. The final crystallographic R-factor is 17.7% for all data in the resolution range 7 to 2.16 A. The standard deviations are 0.015 A in bond lengths and 3.0 degrees in bond angles for the final model, which includes all 447 amino acid residues, one FAD and 369 water molecules. The enzyme is a symmetrical tetramer with point group D2; the symmetry is crystallographic. The redox center of the enzyme consists of FAD and a cysteine (Cys42), which forms a sulfenic acid (Cys-SOH) in its oxidized state. A histidine (His10) close to Cys42 is likely to act as an active-site base. In the analyzed crystal, the enzyme was in a non-native oxidation state with Cys42 oxidized to a sulfonic acid Cys-SO3H. The chain fold of NADH peroxidase is similar to those of disulfide oxidoreductases. A comparison with glutathione reductase, a representative of this enzyme family, is given.  相似文献   

5.
NADH peroxidase from Streptococcus faecalis 10C1 has been crystallized from ammonium sulfate solutions using the hanging drop vapor diffusion method. Depending on pH, the crystals grew in the orthorhombic space group I222 or one of its subgroups P222 or P2(1)2(1)2 (or one of its two permutations). In both cases the unit cell axes are a = 76.6 A, b = 132.9 A, and c = 145.7 A. There are two monomers/asymmetric unit in the body-centered crystal form and four in the primitive one. The enzyme is catalytically active in the crystalline state. The crystals diffract to at least 2.5 A resolution; they are stable in the x-ray beam and hence suitable for detailed three-dimensional structure determination.  相似文献   

6.
The pH dependence of the kinetic parameters V, V/KNADH, and V/KH2O2 has been determined for the flavoenzyme NADH peroxidase. Both V/KNADH and V/KH2O2 decrease as groups exhibiting pK's of 9.2 and 9.9, respectively, are deprotonated. The V profile decreases by a factor of 5 as a group exhibiting a pK of 7.2 is deprotonated. Primary deuterium kinetic isotope effects on NADH oxidation are observed on V only, and the magnitude of DV is independent of H2O2 concentration at pH 7.5. DV/KNADH is pH independent and equal to 1.0 between pH 6 and pH 9.5, but DV is pH dependent, decreasing from a value of 7.2 at pH 5.5 to 1.9 at pH 9.5. The shape of the DV versus pH profile parallels that observed in the V profile and yields a similar pK of 6.6 for the group whose deprotonation decreases DV. Solvent kinetic isotope effects obtained with NADH or reduced nicotinamide hypoxanthine dinucleotide as the variable substrate are observed on V only, while equivalent solvent kinetic isotope effects on V and V/K are observed when H2O2 is used as the variable substrate. In all cases linear proton inventories are observed. Primary deuterium kinetic isotope effects on V for NADH oxidation decrease as the solvent isotopic composition is changed from H2O to D2O. These data are consistent with a change in the rate-limiting step from a step in the reductive half-reaction at low pH to a step in the oxidative half-reaction at high pH. Analysis of the multiple kinetic isotope effect data suggests that at high D2O concentrations the rate of a single proton transfer step in the oxidative half-reaction is slowed. These data are used to propose a chemical mechanism involving the pH-dependent protonation of a flavin hydroxide anion, following flavin peroxide bond cleavage.  相似文献   

7.
The gene encoding the streptococcal flavoprotein NADH oxidase (NOXase), which catalyzes the four-electron reduction of O2-->2H2O, has been cloned and sequenced from the genome of Streptococcus (Enterococcus) faecalis 10C1 (ATCC 11700). The deduced NOXase protein sequence corresponds to a molecular mass of 48.9 kDa and contains three previously sequenced cysteinyl peptides obtained with the purified enzyme. In Escherichia coli, the expressed nox gene produced a catalytically active product, which retained its immunoreactivity to affinity-purified NOXase antisera. Alignment of the NOXase protein sequence with that of streptococcal NADH peroxidase (NPXase) revealed that the proteins are 44% identical. Among the most highly conserved segments is a sequence containing Cys42; this residue is known to exist as a stabilized cysteine-sulfenic acid (Cys-SOH) in NPXase and serves as the non-flavin redox center. In addition, three previously identified NPXase segments, known to be involved in FAD and NAD(P)-binding in other pyridine nucleotide-linked flavoprotein oxidoreductases, are strongly conserved in NOXase. Overall, the extensive homology observed between NOXase and NPXase suggests that the monomer chain fold of the oxidase closely resembles that of the peroxidase. Both sequences share limited but significant homology to those of glutathione reductase and other members of the flavoprotein disulfide reductase family. These and other considerations suggest that these two unusual streptococcal flavoproteins constitute a distinct class of FAD-dependent oxidoreductases, the flavoprotein peroxide reductases, easily contrasted with enzymes such as glutathione reductase and thioredoxin reductase.  相似文献   

8.
DNA fragments encoding streptococcal NADH peroxidase (NPXase) have been amplified, cloned and sequenced from the genome of Streptococcus (Enterococcus) faecalis 10C1 (ATCC 11700). The NPXase gene (npr) comprises 1341 base-pairs and is preceded by a typical ribosome binding site. Upstream from the structural gene, putative -10 and -35 promoter regions have been identified, as has a possible factor-independent terminator that occurs in 3'-flanking sequences. The deduced relative molecular mass (Mr = 49,551), amino acid composition and isoelectric point of NPXase are in good agreement with previous values obtained with the purified enzyme. In addition, three sequenced peptides totaling approximately 20% of the protein were located in the npr gene product. From the sequencing data the deduced NPXase sequence shares low but significant homology with the flavoprotein disulfide reductase class of enzymes ranging from 21% for glutathione reductase (GRase) to 28% for thioredoxin reductase. Alignment of NPXase to Escherichia coli GRase allowed the identification of three previously reported fingerprints for the FAD, NADP+ and central domains of GRase, in the peroxidase sequence. In addition, Cys42 of NPXase, which is present as an unusual stabilized cysteine-sulfenic acid in the oxidized enzyme, aligns favorably with the charge-transfer cysteine in E. coli GRase, and both residues closely follow FAD-binding folds found near their respective amino termini. Such sequence characteristics can also be seen in mercuric reductase, lipoamide dehydrogenase and trypanothione reductase, suggesting that all these enzymes may have originally diverged from a common ancestor. Sequences that are on average 50% identical with three previously reported peptides of the related streptococcal NADH oxidase were also identified in the NPXase primary structure, suggesting a strong similarity between these flavoenzymes. Using the E. coli phage T7 expression system the npr gene has now been overexpressed in an E. coli genetic background. The resultant overexpressing clone produced a recombinant NPXase that was catalytically active and immunoreactive to NPXase antisera.  相似文献   

9.
The oxidation of reduced pyridine nucleotides by peroxidase   总被引:13,自引:0,他引:13  
  相似文献   

10.
11.
We report that the purified Escherichia coli OxyR protein can bind specifically upstream of the gene encoding NADH peroxidase (npr) from Enterococcus faecalis 10C1, to a site located some 144 bp from the promoter. A 34 kDa protein has been identified in crude extracts of E. faecalis that cross-reacts with polyclonal antisera to purified OxyR from E. coli and a protein(s) present in these extracts retards npr DNA fragments in gel shift assays. Taken together with the results of sequence analyses, these observations suggest that enterococcal npr is regulated by OxyR.  相似文献   

12.
Clostridium thermoaceticum contains interesting enzymes suitable for redox reactions. Various AMAPOR (artificial-mediator-accepting pyridine-nucleotide oxidoreductase) activities were used for electromicrobial pyridine nucleotide regeneration. The combination of AMAPOR with commercially available pyridine-nucleotide-dependent oxidoreductases led to (S)-glutamate, (2R,3S)-isocitrate, (2S,3R)-isocitrate, 6-phosphogluconate and ribulose 5-phosphate. The redox equivalents were provided by electrochemically regenerated artificial mediators. Methylviologen or cobalt sepulchrate were used for NAD(P)H regeneration, whereas carboxamidomethylviologen (CAV) or anthraquinone sulphonates (AQ-S) were suitable for NAD(P)+ regeneration. With resting cells of C. thermoaceticum productivity numbers {mmol product/[biocatalyst (kg dry weight) × time (h)]} of about 30 000 for NADPH, 7000 for NADH and 14 000 for NADP+ regeneration could be reached. The cycle number for NADPH regeneration was up to 4300, that for NADP+ regeneration was at least 1600. An aldehyde and an alcohol oxidoreductase were used to reduce non-activated carboxylic acids to the alcohols and to dehydrogenate primary alcohols to the aldehydes or carboxylates. The electromicrobial reduction of 6-chloropyridine 3-carboxylate to the corresponding alcohol was compared with the reduction by CO as electron donor.The application of phenothiazine-dye-type mediators (thionine, methylene blue) converted primary alcohols to the aldehydes with productivity numbers up to 1400 in the presence of hydrazine as aldehyde scavenger. With CAV or AQ-S, alcohols were dehydrogenated to carboxylic acids with productivity numbers of almost 1700.  相似文献   

13.
14.
15.
16.
The mechanisms involved in the induction of cyclosporine A sensitive mitochondrial swelling by oxidative stress were investigated in isolated guinea pig liver mitochondria. The aim of our study was to investigate, if swelling is inevitably associated with the oxidation of pyridine nucleotides, and if the oxidized pyridine nucleotides have to be hydrolysed for the induction of mitochondrial swelling. Quantitative measurement of oxidized pyridine nucleotides was performed with HPLC. Mitochondrial swelling was recorded by monitoring the decrease in light scattering of the mitochondrial suspension. Reduction and oxidation of pyridine nucleotides were followed by monitoring the changes of the autofluorescence signal of reduced pyridine nucleotides. Qualitative measurement of mitochondrial membrane potential was performed with the fluorescence indicator rhodamine 123. Neither t-butyl hydroperoxide nor the dissipation of the mitochondrial inner membrane potential with FCCP (carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone) induced the opening of the membrane permeability transition pore, unless an extensive oxidation of mitochondrial pyridine nucleotides took place. Mitochondrial swelling induced by our experimental conditions was always sensitive to cyclosporine A and accompanied by a cyclosporine A sensitive release of inner mitochondrial pyridine nucleotides without pyridine nucleotide hydrolysis. Not the cycling of calcium across the mitochondrial inner membrane but the accumulation of calcium inside the mitochondria was a prerequisite for mitochondrial swelling. The mitochondrial membrane permeability transition is neither caused nor accompanied by the hydrolysis of mitochondrial pyridine nucleotides.  相似文献   

17.
18.
Isolation of Polyisoprenyl Alcohols from Streptococcus faecalis   总被引:3,自引:3,他引:0       下载免费PDF全文
C(55)-isoprenyl alcohol and its derivatives have been isolated from Streptococcus faecalis and characterized. The relative amounts present as free alcohol, neutral lipid esters, and phosphate ester derivatives were determined. The chain lengths, mass spectra, and cis to trans ratio of double bonds are reported.  相似文献   

19.
The participation of Mg complex of nucleoside diphosphates and nucleoside triphosphates in the reverse and forward reactions catalyzed by purified carbamyl phosphokinase (ATP : carbamate phosphotransferase, EC 2.7.2.2) of Streptococcus faecalis R, ATCC-8043 were studied. The results of initial velocity studies of approx. 1 mM free Mg2+ concentration have indicated that in the reverse reaction MgdADP was as effective a substrate as MgADP. The phosphoryl group transfer from carbamyl phosphate to MgGDP, MgCDP and MgUDP was also observed at relatively higher concentrations of the enzyme and respective magnesium nucleoside diphosphate. In the forward direction MgdATP was found to be as efficient a phosphate donor as MgATP. On the other hand, Mg complexes of GTP, CTP and UTP were ineffective even at higher concentrations of the enzyme and respective magnesium nucleoside triphosphate. Product inhibition studies carried out at non-inhibitory level of approx. 1 mM free Mg2+ concentration have revealed that the enzyme has two distinct sites, one for nucleoside diphosphate or nucleoside triphosphate and the other for carbamyl phosphate or carbamate, and its reaction with the substrates is of the random type. Further tests of numerical values for kinetic constants have indicated that they are partially consistent with the Haldane relationship which is characteristic of rapid equilibrium and random mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号