首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Although human and gibbons are classified in the same primate superfamily (Hominoidae), their karyotypes differ by extensive chromosome reshuffling. To date, there is still limited understanding of the events that shaped extant gibbon karyotypes. Further, the phylogeny and evolution of the twelve or more extant gibbon species (lesser apes, Hylobatidae) is poorly understood, and conflicting phylogenies have been published. We present a comprehensive analysis of gibbon chromosome rearrangements and a phylogenetic reconstruction of the four recognized subgenera based on molecular cytogenetics data. We have used two different approaches to interpret our data: (1) a cladistic reconstruction based on the identification of ancestral versus derived chromosome forms observed in extant gibbon species; (2) an approach in which adjacent homologous segments that have been changed by translocations and intra-chromosomal rearrangements are treated as discrete characters in a parsimony analysis (PAUP). The orangutan serves as an "outgroup", since it has a karyotype that is supposed to be most similar to the ancestral form of all humans and apes. Both approaches place the subgenus Bunopithecus as the most basal group of the Hylobatidae, followed by Hylobates, with Symphalangus and Nomascus as the last to diverge. Since most chromosome rearrangements observed in gibbons are either ancestral to all four subgenera or specific for individual species and only a few common derived rearrangements at subsequent branching points have been recorded, all extant gibbons may have diverged within relatively short evolutionary time. In general, chromosomal rearrangements produce changes that should be considered as unique landmarks at the divergence nodes. Thus, molecular cytogenetics could be an important tool to elucidate phylogenies in other species in which speciation may have occurred over very short evolutionary time with not enough genetic (DNA sequence) and other biological divergence to be picked up.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

2.
This review examines recent advances in comparative eutherian cytogenetics, including Zoo-FISH data from 30 non-primate species. These data provide insights into the nature of karyotype evolution and enable the confident reconstruction of ancestral primate and boreo-eutherian karyotypes with diploid chromosome numbers of 48 and 46 chromosomes, respectively. Nine human autosomes (1, 5, 6, 9, 11, 13, 17, 18, and 20) represent the syntenies of ancestral boreo-eutherian chromosomes and have been conserved for about 95 million years. The average rate of chromosomal exchanges in eutherian evolution is estimated to about 1.9 rearrangements per 10 million years (involving 3.4 chromosome breaks). The integrated analysis of Zoo-FISH data and alignments of human and mouse draft genome sequences allow the identification of breakpoints involved in primate evolution. Thus, the boundaries of ancestral eutherian conserved segments can be delineated precisely. The mapping of rearrangements onto the phylogenetic tree visualizes landmark chromosome rearrangements, which might have been involved in cladogenesis in eutherian evolution.  相似文献   

3.
A total of 32 loci comprising specific genes, microsatellites and anonymous BAC clones from horse and cattle were mapped on donkey chromosomes. Of these, 13 markers were also mapped for the first time in the horse. This information, together with that previously available in donkey and horse updates the comparative status of the karyotypes of the two species. The findings of the present study for the first time show correlation between eleven equine acrocentric autosomes and the donkey chromosomes and in part enable detection of rearrangements between them. There are still 7-8 pairs of chromosomes/arms for which no correspondence is known. At least 20 chromosome rearrangements (inversions, fusions and fissions) are already identified that differentiate the two karyotypes. More will be known once complete correspondence is deduced between them. These observations match similar differences observed between human-gibbon and mouse-rat karyotypes that show considerable rearrangements in relation to each other. How donkey and horse karyotypes gathered these differences within a short period of 5-10 Myr since divergence from a common ancestor will be known only after an ancestral equid karyotype is deduced, and the direction of change leading to chromosome rearrangements is clearly understood.  相似文献   

4.
Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.  相似文献   

5.
The presumed ancestral karyotype of Muridae, previously reconstructed, is compared with that of a selected Cricetidae species, Akodon a arviculoides. Most of the chromosomes of the presumed ancestral chromosomes of Muridae are homeologous to chromosome arms or segments in the Akodon karyotype. This result strengthens the validity of the reconstruction of the ancestral karyotype for both Muridae and Cricetidae.  相似文献   

6.
The sequence of chromosomal rearrangements that leads to the karyotypes of living species of Sciurinae is hardly compatible with a dichotomic evolution. The most probable hypothesis is that of a populational chromosomal evolution: the different lineages would have been isolated successively from an ancestral population in which several chromosomal rearrangements would have spread to more or less important fractions of the population. The proposed order in the succession of these isolations (Marmota monax, Sciurus vulgaris, Callosciurus flavimanus, Heliosciurus gambianus, Atlantoxerus getulus, Eutamias sibiricus then Menetes berdmorei) fits the paleontological data.  相似文献   

7.
Cross-species chromosome painting has made a great contribution to our understanding of the evolution of karyotypes and genome organizations of mammals. Several recent papers of comparative painting between tree and flying squirrels have shed some light on the evolution of the family Sciuridae and the order Rodentia. In the present study we have extended the comparative painting to the Himalayan marmot (Marmotahimalayana) and the African ground squirrel (Xerus cf. erythropus), i.e. representative species from another important squirrel group--the ground squirrels--, and have established genome-wide comparative chromosome maps between human, eastern gray squirrel, and these two ground squirrels. The results show that 1) the squirrels so far studied all have conserved karyotypes that resemble the ancestral karyotype of the order Rodentia; 2) the African ground squirrels could have retained the ancestral karyotype of the family Sciuridae. Furthermore, we have mapped the evolutionary rearrangements onto a molecular-based consensus phylogenetic tree of the family Sciuridae.  相似文献   

8.
A great deal of diversity in chromosome number and arrangement is observed across the amniote phylogeny. Understanding how this diversity is generated is important for determining the role of chromosomal rearrangements in generating phenotypic variation and speciation. Gaining this understanding is achieved by reconstructing the ancestral genome arrangement based on comparisons of genome organization of extant species. Ancestral karyotypes for several amniote lineages have been reconstructed, mainly from cross-species chromosome painting data. The availability of anchored whole genome sequences for amniote species has increased the evolutionary depth and confidence of ancestral reconstructions from those made solely from chromosome painting data. Nonetheless, there are still several key lineages where the appropriate data required for ancestral reconstructions is lacking. This review highlights the progress that has been made towards understanding the chromosomal changes that have occurred during amniote evolution and the reconstruction of ancestral karyotypes.  相似文献   

9.
Rodents represent the largest order of living mammals. It comprises 5 sub-orders, among which Sciuromorpha (Sciuridae, Gliridae and Aplodontiidae) are assumed to occupy a basal position in rodent evolution. Banded karyotypes of some representatives of the Sciuridae family have been compared to each other, and comparisons with man were performed using chromosome paintings. Sciuridae karyotypes have conserved several eutherian ancestral syntenies. Like Sciuridae, Gliridae possess some chromosomes easily comparable with those of Primates. Comparisons of Gliridae and Sciuridae chromosomes with those of the presumed eutherian ancestor provide information about their chromosomal evolution and their position among Rodentia. Although both Sciuridae and Gliridae karyotypes are relatively conserved, they display many differences, indicating their early divergence. The reconstruction of their chromosomal evolution allowed us to propose the composition of their presumed ancestral karyotypes, with 2n = 48 and 2n = 38 for Gliridae and Sciuridae, respectively. Since rodent emergence, a single rearrangement is common to these 2 families. It formed a chromosome with fragments homologous to human chromosomes 4-8p-4-12-22, not detected in other rodents, and thus characteristic for the Sciuromorpha. This allowed us to reassess the chromosomal signatures of Rodentia. Finally, we show that the speed of chromosomal evolution in Gliridae is intermediate between that of Sciuridae (low) and Muridae (high).  相似文献   

10.
ABSTRACT: BACKGROUND: Cancer, much like most human disease, is routinely studied by utilizing model organisms. Of these model organisms, mice are often dominant. However, our assumptions of functional equivalence fail to consider the opportunity for divergence conferred by ~180 Million Years (MY) of independent evolution between these species. For a given set of human disease related genes, it is therefore important to determine if functional equivalency has been retained between species. In this study we test the hypothesis that cancer associated genes have different patterns of substitution akin to adaptive evolution in different mammal lineages. RESULTS: Our analysis of the current literature and colon cancer databases identified 22 genes exhibiting colon cancer associated germline mutations. We identified orthologs for these 22 genes across a set of high coverage (>6X) vertebrate genomes. Analysis of these orthologous datasets revealed significant levels of positive selection. Evidence of lineage-specific positive selection was identified in 14 genes in both ancestral and extant lineages. Lineage-specific positive selection was detected in the ancestral Euarchontoglires and Hominidae lineages for STK11, in the ancestral primate lineage for CDH1, in the ancestral Murinae lineage for both SDHC and MSH6 genes and the ancestral Muridae lineage for TSC1. CONCLUSION: Identifying positive selection in the primate, Hominidae, Muridae and Murinae lineages suggest an ancestral functional shift in these genes between the rodent and primate lineages. Analyses such as this, combining evolutionary theory and predictions - along with medically relevant data, can thus provide us with important clues for modeling human diseases.  相似文献   

11.
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis.  相似文献   

12.
Fifteen chromosome forms of Ellobius talpinus (from 2n = 31 to 2n = 54) were found in the small area in the Pamirs. Low-chromosome karyotypes evolved from 54-chromosomal ancestral form by Robertsonia centric fusions. The DNA reassociation kinetics of 34- and 54-chromosome forms of E. talpinus have been studied. For comparison DNA of E. lutescens (2n = 17) the karyotype of which seems to have arisen from 54-chromosome ancestor by Robertsonian and other types rearrangements was examined. Reassociation profiles of Ellobius DNA suggest the existence of several repeated sequences families with different frequences of repetitions. The reassociation curves of DNA from 34- and 54-chromosome forms were identical. These data indicate absence of changes in DNA molecular organization during the evolution of E. talpinus karyotypes by Robertsonian fusions. Comparative analysis of DNA reassociation kinetics of E. talpinus and E. lutescens showed identical characteristics of highly repeated sequences and of one from the three intermediate fractions, however Cot 1/2, complexity and repetitive frequencies of two intermediate fractions of E. talpinus and E. lutescens were different. It is possible that non-robertsonian rearrangements of E. lutescens karyotype affected only intermediate repetitions. The alternative explanation of these data is a simple divergence of repeated sequences during the evolution of E. lutescens DNA.  相似文献   

13.
ZOO-FISH (Fluorescent "in vitro" hybridization) was used to establish the chromosomal homology between humans (HSA) and Cebus nigrivitatus (CNI) and Ateles belzebuth hybridus (ABH). These two species belong to different New World monkey families (Cebidae and Atelidae, respectively) which differ greatly in chromosome number and in chromosome morphology. The molecular results were followed by a detailed banding analysis. The ancestral karyotype of Cebus was then determined by a comparison of in situ hybridization results, as well as chromosomal morphology and banding in other Platyrrhini species. The karyotypes of the four species belonging to the genus Cebus differ from each other by three inversions and one fusion as well as in the location and amounts of heterochromatin. Results obtained by ZOO-FISH in ABH are in general agreement with previous gene-mapping and in situ hybridization data in Ateles, which show that spider monkeys have highly derived genomes. The chromosomal rearrangements detected between HSA and ABH on a band-to-band basis were 27 fusions/fissions, 12 centromeric shifts, and six pericentric inversions. The ancestral karyotype of Cebus was then compared with that of Ateles. The rearrangements detected were 20 fusions/fissions, nine centromeric shifts, and five inversions. Atelidae species are linked by a fragmentation of chromosome 4 into three segments forming an association of 4/15, while Ateles species are linked by 13 derived associations. The results also helped clarify the content of the ancestral platyrrhine karyotype and the mode of chromosomal evolution in these primates. In particular, associations 2/16 and 5/7 should be included in the ancestral karyotype of New World monkeys.  相似文献   

14.
Establishing chromosomal homology in comparative cytogenetics remained speculative until the advent of molecular cytogenetics. Chromosome sorting by flow cytometry and degenerate oligonucleotide primed-PCR (DOP-PCR) brought a significant simplification and impetus to chromosome painting. Comparative chromosome painting has permitted reasonable hypotheses for ancestral karyotypes at many points on the phylogenetic tree of mammals. Derived associations often provided landmarks that showed the route evolution took. More recently hybridization with cloned DNA has provided information on intrachromosomal rearrangements. BAC-FISH allows marker order, in addition to syntenies and associations, to be added to the ancestral karyotypes. Comparisons of marker order across species revealed that centromere shifts (evolutionary new centromeres) are frequent and important phenomena of chromosome evolution. Further comparison between evolutionary new centromeres and clinical neocentromeres shows that an evolutionary perspective can provide compelling, underlying, explicative grounds for contemporary genomic phenomena.  相似文献   

15.
The karyotypes of European vespertilionid bats are distinguished by only a few, easily detectable differences in their G-banding patterns. Most rearrangements can be identified as Robertsonian translocations. Yet, there are surprising differences in the location of active nucleolus organizer regions (NORs), as revealed by silver staining. The ancestral position of the NOR is considered to be a secondary constriction on chromosome 15, as is the case in the genera Eptesicus, Nyctalus, and Vespertilio and in three of four Pipistrellus species. The remaining genera show multiple NOR sites located on minute short arms close to the centromere. In P. pipistrellus, differences in the location of the NORs correlate with the geographical origin of the animals. Some Myotis species possess NORs on numerous chromosomes and show great interindividual variability. In addition, two sibling species, M. brandtii and M. mystacinus, show completely different NOR locations.  相似文献   

16.
The karyotypes of five species of Brazilian Pseudophyllinae belonging to four tribes were here studied. The data available in the literature altogether with those obtained with species in here studied allowed us to infer that 2n(♂)=35 is the highest chromosome number found in the family Tettigoniidae and that it is present in species belonging to Pseudophyllinae, Zaprochilinae and in one species of Tettigoniinae. In spite of that all five species exhibit secondary karyotypes arisen surely by a mechanism of chromosomal rearrangement of centric fusion, tandem fusion and centric inversion types from those with 2n(♂)=35 and FN=35, they share some common traits. The X chromosome is submetacentric (FN=36), heteropicnotic during the first prophase, the largest of the set but its size is rather variable among the species and the sex chromosomal mechanism is of the XO( ♂ ), XX( ♀ ) type. The chromosomal rearrangements involved in the karyotype evolution of the Pseudophyllinae and its relationship with those of the family Tettigoniidae are discussed and we propose that the basic and the ancestral karyotype of the Tettigoniidae is formed by 2n(♂)=35, FN=35 and not by 2n(♂)=31, FN= 31, as usually accepted.  相似文献   

17.
A panel of human chromosome painting probes and bacterial and P1 artificial chromosome (BAC/PAC) clones were used in fluorescence in situ hybridization (FISH) experiments to investigate the chromosome conservation of the ring-tailed lemur (Lemur catta, LCA) with respect to human. Whole chromosome paints specific for human chromosomes 7, 9, 11, 13, 14, 17, 18, 20, 21, and X were found to identify a single chromosome or an uninterrupted chromosomal region in LCA. A large set of partial chromosome paints and BAC/PAC probes were then used to refine the characterization of the rearrangements differentiating the two karyotypes. The results were also used to reconstruct the ancestral Lemuridae karyotype. Lemur catta, indeed, can be used as an outgroup, allowing symplesiomorphic (ancestral) rearrangements to be distinguished from apomorphic (derived) rearrangements in lemurs. Some LCA chromosomes are difficult to distinguish morphologically. The 'anchorage' of most LCA chromosomes to specific probes will contribute to the standardization of the karyotype of this species.  相似文献   

18.
The Ursidae family includes eight species, the karyotype of which diverges somewhat, in both chromosome number and morphology, from that of other families in the order Carnivora. The combination of consensus molecular phylogeny and high-resolution trypsin G-banded karyotype analysis has suggested that ancestral chromosomal fissions and at least two fusion events are associated with the development of the different ursid species. Here, we revisit this hypothesis by hybridizing reciprocal chromosome painting probes derived from the giant panda (Ailuropoda melanoleuca), domestic cat (Felis catus), and man (Homo sapiens) to representative bear species karyotypes. Comparative analysis of the different chromosome segment homologies allowed reconstruction of the genomic composition of a putative ancestral bear karyotype based upon the recognition of 39 chromosome segments defined by painting as the smallest conserved evolutionary unit segments (pSCEUS) among these species. The different pSCEUS combinations occurring among modern bear species support and extend the postulated sequence of chromosomal rearrangements and provide a framework to propose patterns of genome reorganization among carnivores and other mammal radiations.  相似文献   

19.
A brief history of human autosomes.   总被引:11,自引:0,他引:11  
Comparative gene mapping and chromosome painting permit the tentative reconstruction of ancestral karyotypes. The modern human karyotype is proposed to differ from that of the most recent common ancestor of catarrhine primates by two major rearrangements. The first was the fission of an ancestral chromosome to produce the homologues of human chromosomes 14 and 15. This fission occurred before the divergence of gibbons from humans and other apes. The second was the fusion of two ancestral chromosomes to form human chromosome 2. This fusion occurred after the divergence of humans and chimpanzees. Moving further back in time, homologues of human chromosomes 3 and 21 were formed by the fission of an ancestral linkage group that combined loci of both human chromosomes, whereas homologues of human chromosomes 12 and 22 were formed by a reciprocal translocation between two ancestral chromosomes. Both events occurred at some time after our most recent common ancestor with lemurs. Less direct evidence suggests that the short and long arms of human chromosomes 8, 16 and 19 were unlinked in this ancestor. Finally, the most recent common ancestor of primates and artiodactyls is proposed to have possessed a chromosome that combined loci from human chromosomes 4 and 8p, a chromosome that combined loci from human chromosomes 16q and 19q, and a chromosome that combined loci from human chromosomes 2p and 20.  相似文献   

20.
The subfamily Phyllostominae comprises taxa with a variety of feeding strategies. From the cytogenetic point of view, Phyllostominae shows different rates of chromosomal evolution between genera, with Phyllostomus hastatus probably retaining the ancestral karyotype for the subfamily. Since chromosomal rearrangements occur rarely in the genome and have great value as phylogenetic markers and in taxonomic characterization, we analyzed three species: Lophostoma silvicola (LSI), Phyllostomus discolor (PDI) and Tonatia saurophila (TSA), representing the tribe Phyllostomini, collected in the Amazon region, by classic and molecular cytogenetic techniques in order to reconstruct the phylogenetic relationships within this tribe. LSA has a karyotype of 2n=34 and FN=60, PDI has 2n=32 and FN=60 and TSA has 2n=16 and FN=20. Comparative analysis using G-banding and chromosome painting show that the karyotypic complement of TSA is highly rearranged relative to LSI and PHA, while LSI, PHA and PDI have similar karyotypes, differing by only three chromosome pairs. Nearly all chromosomes of PDI and PHA were conserved in toto, except for chromosome 15 that was changed by a pericentric inversion. A strongly supported phylogeny (bootstrap=100 and Bremer=10 steps), confirms the monophyly of Phyllostomini. In agreement with molecular topologies, TSA was in the basal position, while PHA and LSI formed sister taxa. A few ancestral syntenies are conserved without rearrangements and most associations are autapomorphic traits for Tonatia or plesiomorphic for the three genera analyzed here. The karyotype of TSA is highly derived in relation to that of other phyllostomid bats, differing from the supposed ancestral karyotype of Phyllostomidae by multiple rearrangements. Phylogenies based on chromosomal data are independent evidence for the monophyly of tribe Phyllostomini as determined by molecular topologies and provide additional support for the paraphyly of the genus Tonatia by the exclusion of the genus Lophostoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号