首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Monosialogangliosides (GM) purified from bovine brain were incorporated into circular dichroism (CD)-active liposomes and the effects of GM on the membrane dynamics were studied by CD spectroscopy. In the presence of 7 mol% of GM, the phase transition temperature (Tc) of the membrane increased by ca. 10 degrees C compared with the membrane without GM and characteristic CD spectra were observed for CD-active liposomes incorporating GM at low temperature. Asialogangliosides had no effect on the CD spectra or Tc. We have also studied the role of GM in reducing leakage of [3H]sucrose from liposomes composed of egg phosphatidylcholine, dipalmitoyl phosphatidic acid, cholesterol and alpha-tocopherol with a molar ratio of 4 : 1 : 5 : 0.1 in the presence of human plasma at 25 degrees C. The half-life of [3H]-sucrose leakage was 173 h for liposomes incorporating 7 mol% of GM. On the other hand, the half-lives for liposomes incorporating 7 mol% of asialogangliosides and liposomes without glycolipids were 45 and 42 h, respectively. These results indicate that sialic acid on the membrane surface contributes to the increase of Tc, to the change of the aggregation state of phospholipids and to the stabilization of liposomes in plasma.  相似文献   

2.
Oat and rye plants were treated with either tetcyclacis (an experimental plant growth regulator), nuarimol (a fungicide) or gamma-ketotriazole (an experimental herbicide). These treatments reduced shoot growth and changed the lipid composition of the shoot plasma membranes. In oat, both tetcyclacis and nuarimol treatments increased plasma membrane cholesterol and increased the phosphatidylethanolamine/phosphatidylcholine (PE/PC) ratio, whereas gamma-ketotriazole treatment reduced cholesterol and the PE/PC ratio. In rye, all treatments reduced the PE/PC ratio. Generally, the sterol/phospholipid ratio was less in oat than in rye but the cholesterol/phospholipid ratio was greater. With all treatments in oat and rye, increases were observed in unsaturation of the phospholipid acyl chains. The fluidity of membranes was measured by steady-state fluorescence polarisation of the probe diphenylhexatriene; oat membranes were more fluid than rye. Membrane fluidity was greater in plasma membranes from plants treated with the xenobiotics than the controls. The results are discussed in the context of the effect of plasma membrane lipid composition on membrane fluidity, and it is concluded that there appears to be no overall simple relationship between membrane lipid composition and fluidity that holds for all treatments in both species.  相似文献   

3.
Highly purified plasma membranes of bovine thyroid were obtained by differential pelleting followed by discontinuous gradient centrifugation in a swing-out rotor. Subfractions of plasma membranes were prepared by affinity chromatography on Con A-Sepharose. The final membrane fractions were enriched 25-30-fold over homogenate in 5'-nucleotidase and alkaline phosphatase and displayed a protein to phospholipid ratio of 1.67 and a cholesterol to phospholipid molar ratio of 0.55. The phospholipid composition did not deviate appreciably from that of whole tissue except for the higher sphingomyelin level (22.5 vs. 14.0%). The predominant fatty acids were palmitic (16:0), oleic (18:1), stearic (18:0) and linoleic (18:2) acid. The physical state of the membrane was studied by (i) calculation of the lipid structural order parameter SDPH from steady-state fluorescence anisotropy determinations of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH); (ii) estimation of the lateral diffusion coefficient of pyrene following excimer formation. These parameters were determined in native thyroid plasma membranes and in reconstituted vesicles, obtained by detergent dialysis from octylglucoside solubilized membrane components. The presence of membrane protein or neutral lipids induced more restraint on the movements of the fluorophores. The lipid order parameter, SDPH was mainly determined by the neutral lipids. Subfractions of plasma membrane enriched in luminal membranes have a slightly lower fluidity (higher SDPH and lower Ddiff values) than subfractions enriched in basolateral membranes. This difference appears to be due to both differences in lipid as well as protein composition. Under physiological conditions, no significant alterations in probe dynamics could be observed upon addition of thyrotropin or cholera toxin, even at micromolar concentrations.  相似文献   

4.
The special physical state of the sphingolipid-enriched membranes with characteristic lipid composition, presently one of the most controversial foci in cell biology, provides the essential environment for the proteins inside to be involved in the related physiological processes. The role of gangliosides, an important component of the membranes, deserves attention. The present investigation using several biophysical techniques indicates that ganglioside GM(1) induces the phase separation in the sphingomyelin membrane with 5 mol% cholesterol and regulates the membrane structure. The results of differential scanning calorimetry show that a higher T(m), GM(1)-rich phase emerges behind the lower T(m), sphingomyelin-rich phase with the incorporation of GM(1) into the sphingomyelin/cholesterol bilayers; and the GM(1)-rich phase dominates the membrane when the proportion of GM(1) reaches about 20 mol%. Fluorescence quenching further shows that the separation of the two domains is independent of temperature, occurring both in the gel phase and in the liquid phase. Laser Raman spectroscopy and fluorescence polarization suggest that the order of hydrocarbon chains increases and membrane fluidity decreases with increase in GM(1) content. Use of the fluorescence probe merocyanine-540 and electron microscopy reveals that the insertion of GM(1) leads to an increase in the spatial density of the lipid headgroups and a decrease in the curvature of the sphingomyelin/cholesterol bilayers. In sums, both the hydrophilic sugar heads and the hydrophobic hydrocarbon chains of GM(1) contribute to the regulation of membrane architecture. We suggest that the convex curvature of ganglioside-enriched membrane could be involved in forming and maintaining the characteristic flask-shaped invagination of caveolae.  相似文献   

5.
Experiments were conducted, using a nonspecific lipid transfer protein, to vary the cholesterol/phospholipid molar ratio of rat proximal small intestinal microvillus membranes in order to assess the possible role of cholesterol in modulating enzymatic activities of this plasma membrane. Cholesterol/phospholipid molar ratios from 0.71 to 1.30 were produced from a normal value of 1.05 by incubation with the transfer protein and an excess of either phosphatidylcholine or cholesterol/phosphatidylcholine liposomes for 60 min at 37 degrees C. Cholesterol loading or depletion of the membranes was accompanied by a decrease or increase, respectively, in their lipid fluidity, as assessed by steady-state fluorescence polarization techniques using the lipid-soluble fluorophore 1,6-diphenyl-1,3,5-hexatriene. Increasing the cholesterol/phospholipid molar ratio also decreased alkaline phosphatase specific activity by approximately 20-30%, whereas decreasing this ratio increased this enzymatic activity by 20-30%. Sucrase, maltase, and lactase specific activities were not affected in these same preparations. Since the changes in alkaline phosphatase activity could be secondary to alterations in fluidity, cholesterol, or both, additional experiments were performed using benzyl alcohol, a known fluidizer. Benzyl alcohol (25 mM) restored the fluidity of cholesterol-enriched preparations to control levels, did not change the cholesterol/phospholipid molar ratio, and failed to alter alkaline phosphatase activity. These findings, therefore, indicate that alterations in the cholesterol content and cholesterol/phospholipid molar ratio of microvillus membranes can modulate alkaline phosphatase but not sucrase, maltase, or lactase activities. Moreover, membrane fluidity does not appear to be an important physiological regulator of these enzymatic activities.  相似文献   

6.
The effect of 60 hr ethanol ingestion on lipid composition of liver and brain membranes from 2-day-old chicks was investigated. Analysis of hepatic membrane cholesterol shows that ethanol induced a slight increase in microsomes exclusively due to free cholesterol while mitochondria was not affected. In brain, both fractions showed a clear increase in their cholesterol content, while a high decrease was observed in myelin. Free cholesterol was also the main responsible for the changes found in brain. The ethanol-treated animals showed an alteration in their phospholipid composition exclusively in brain microsomes and myelin. Despite all these changes, the values of cholesterol/phospholipid molar ratio in both liver and brain membranes remained unaltered after short ethanol treatment. Our results indicate that neonatal chick brain membranes appears to be especially sensitive to the presence of ethanol.  相似文献   

7.
The influence of fatty acids on model cholesterol/phospholipid membranes   总被引:1,自引:0,他引:1  
The aim of this work was to verify the influence of the saturated (SFA) (stearic acid) and the unsaturated (UFA) (oleic and alpha-linolenic) fatty acids on model cholesterol/phospholipid membranes. The experiments were based on the Langmuir monolayer technique. Cholesterol and phospholipid were mixed in the molar ratio that corresponds to the proportion of these lipids in the majority of natural human membranes. Into the binary cholesterol/phospholipid monolayers, various amounts of fatty acids were incorporated. Our investigations were based on the analysis of the interactions between molecules in ternary (cholesterol/phospholipids/fatty acid) mixtures, however, also binary (cholesterol/fatty acid and phospholipids/fatty acid) mixed system were examined. It was concluded that the influence of the fatty acids on model cholesterol/phospholipid membrane is closely connected with the shape of the fatty acid molecule, resulting from the saturation degree of the hydrocarbon chain. It was found that the saturated fatty acid makes the model membrane more rigid, while the presence of unsaturated fatty acid increases its fluidity. The increasing amount of stearic acid gradually destabilizes model membrane, however, this effect is the weakest at low content of SFA in the mixed monolayer. Unsaturated fatty acids in a small proportion make the membrane thermodynamically more stable, while higher content of UFA decreases membrane stability. This explains low proportion of the free fatty acids to other lipids in natural membrane.  相似文献   

8.
The content of gangliosides and sialosylglycoproteins was investigated in a coated-vesicle-enriched fraction prepared from bovine brain by the method of Pearse [(1975) J. Mol. Biol. 97, 93-98] and further purified by g.p.c. (glass-permeation chromatography) [Pfeffer & Kelly (1981) J. Cell Biol. 91, 385-391]. From morphological criteria and from the analysis of the polypeptide pattern on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis the coated-vesicle fraction (CV-fraction) appeared more than 95% pure. The ganglioside-NeuAc (N-acetylneuraminate), glycoprotein-NeuAc, phospholipid and cholesterol contents of CV-fraction were compared with those of bovine brain synaptic plasma membranes (SPM). The cholesterol to phospholipid molar ratio was 0.47 +/- 0.07 in CV-fraction and 1.06 +/- 0.08 in SPM. The ganglioside-NeuAc and glycoprotein-NeuAc to phospholipid molar ratios were 0.047 and 0.020 respectively in CV-fraction and 0.039 and 0.016 respectively in SPM. The (Na+ + K+)-dependent ATPase activity sensitive to ouabain (in mumol of Pi/h per nmol of phospholipid) was 1.04 in CV-fraction and 0.63 in SPM; the ratio between this activity and the activity resistant to ouabain was 2 in CV-fraction and 1.4 in SPM. A t.l.c. analysis of the ganglioside fractions showed that most of the ganglioside species present in SPM were present in CV-fraction. In a rat brain coated-vesicle preparation not subjected to g.p.c., the activities [as sugar-radioactivity (c.p.m.) transferred/h per mumol of phospholipid] of the enzymes CMP-NeuAc:sialosyl-lactosylceramide (GM3) sialosyl-, UDP-Gal:N-acetylgalactosaminyl(sialosyl)lactosylceramide (GM2) galactosyl- and UDP-GalNAc:sialosyl-lactosylceramide (GM3) N-acetylgalactosaminyl-transferases, which were considered Golgi-apparatus markers, were about 19, 16 and 10% respectively of those determined in rat brain neuronal perikaryon-enriched fractions. Taken together, the results indicate that most of the major gangliosides are constituents of coated vesicles.  相似文献   

9.
Rotational diffusion of cholestane spin-label (CSL), a sterol analogue, in various phosphatidylcholine (PC)-cholesterol membranes was systematically studied by computer simulation of steady-state ESR spectra as a function of chain length and unsaturation of alkyl chains, cholesterol mole fraction, and temperature for better understanding of phospholipid-cholesterol and cholesterol-cholesterol interactions. CSL motion in the membrane was treated as Brownian rotational diffusion of a rigid rod within the confines of a cone imposed by the membrane environment. The wobbling rotational diffusion constant of the long axis, its activation energy, and the cone angle of the confines are obtained for various membranes in the liquid-crystalline phase. The wobbling diffusion constant decreases in the order dilauroyl-PC greater than dimyristoyl-PC greater than dioleoyl-PC approximately dipalmitoyl-PC greater than distearoyl-PC greater than dioleoyl-PC/cholesterol = 3/1 greater than dioleoyl-PC/cholesterol = 1/1 membranes. Activation energy for the wobbling diffusion of the long axis of CSL is strongly dependent on alkyl chain length, unsaturation, and cholesterol mole fraction. It decreases with decrease in alkyl chain length and by introduction of unsaturation in the alkyl chains. In dioleoylphosphatidylcholine membranes, activation energy decreases by a factor of approximately 3 in the presence of 50 mol % cholesterol. Activation energy for wobbling diffusion of CSL in phosphatidylcholine membranes is smaller than the activation energy for translational diffusion of a phospholipid. The former is more dependent on alkyl chain length and unsaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Self- or concentration quenching of octadecylrhodamine B (C18-Rh) fluorescence increases linearly in egg phosphatidylcholine (PC) vesicles but exponentially in vesicles composed of egg PC:cholesterol, 1:1, as the probe concentration is raised to 10 mol%. Cholesterol-dependent enhancement of self-quenching also occurs when N-(lissamine-rhodamine-B-sulfonyl)dioleoylphosphatidylethanolamine is substituted for C18-Rh and resembles that in dipalmitoylphosphatidylcholine vesicles below, as opposed to above, the phase transition. These effects are not due to changes in dimer:monomer absorbance. Stern-Volmer plots indicate a dependence of quenching on nonfluorescent dimers both in the presence and absence of cholesterol. Decreases in fluorescence lifetimes with increasing probe concentration parallel decreases in residual fluorescence of C18-Rh with increasing probe concentration in PC and PC + cholesterol membranes, respectively. Decreases in the steady-state polarization of C18-Rh fluorescence as its concentration is raised to 10 mol% indicate energy transfer with emission between probe molecules in PC and to a lesser extent in PC + cholesterol membranes. The calculated R0 for 50% efficiency of energy transfer from excited state probe to monomer was 55-58 A and to dimer was 27 A. Since lateral diffusion of C18-Rh is probably too slow to permit collisional quenching during the lifetime of the probe, even if C18-Rh were concentrated in a separate phase, C18-Rh self-quenching appears to be due mainly to energy transfer without emission to nonfluorescent dimers.  相似文献   

11.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)+cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS)+cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3 beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

12.
Tissue-nonspecific alkaline phosphatase (TNAP) is associated to the plasma membrane via a GPI-anchor and plays a key role in the biomineralization process. In plasma membranes, most GPI-anchored proteins are associated with "lipid rafts", ordered microdomains enriched in sphingolipids, glycosphingolipids and cholesterol. In order to better understand the role of lipids present in rafts and their interactions with GPI-anchored proteins, the insertion of TNAP into different lipid raft models was studied using dipalmitoylphosphatidylcholine (DPPC), cholesterol (Chol), sphingomyelin (SM) and ganglioside (GM1). Thus, the membrane models studied were binary systems (9:1 molar ratio) containing DPPC:Chol, DPPC:SM and DPPC:GM1, ternary systems (8:1:1 molar ratio) containing DPPC:Chol:SM, DPPC:Chol:GM1 and DPPC:SM:GM1 and finally, a quaternary system (7:1:1:1 molar ratio) containing DPPC:Chol:SM:GM1. Calorimetry analysis of the liposomes and proteoliposomes indicate that lateral phase segregation could be noted only in the presence of cholesterol, with the formation of cholesterol-rich microdomains centered above Tc=41.5°C. The presence of GM1 and SM into DPPC-liposomes influenced mainly ΔH and Δt(1/2) values. The gradual increase in the complexity of the systems decreased the activity of the enzyme incorporated. The presence of the enzyme also fluidifies the systems, as seen by the intense reduction in ?H values, but do not alter Tc values significantly. Therefore, the study of different microdomains and its biophysical characterization may contribute to the knowledge of the interactions between the lipids present in MVs and its interactions with TNAP.  相似文献   

13.
The interaction of three vitamin A derivatives or retinoids: all-trans-retinoic acid, 13-cis-retinoic acid and retinol with multilamellar phospholipid bilayers was studied using a combination of 2H- and 31P-NMR measurements. The following model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers; (2) bilayers composed of a mixture of DPPC and bovine heart phosphatidylcholine (PC); (3) mixed PC/phosphatidylethanolamine (PE) bilayers. Only a weak interaction was observed between 13-cis-retinoic acid and DPPC membranes. Addition of all-trans-retinoic acid at a molar ratio of 1:2 to the lipid causes a small decrease (5 C degrees) in the gel to liquid crystalline phase-transition temperature of DPPC, a small increase in the order parameters of the lipid side-chains of single component bilayers and no measurable effect in the other lipid systems studied. Considerably larger perturbation in the lipid bilayer structure is introduced by addition of retinol which, at a molar ratio of 1:2 to the lipid, lowered the gel to liquid crystalline phase-transition temperature of DPPC by 21 C degrees and caused a decrease of order parameters of the lipid side-chains in all three lipid bilayer systems. These effects are consistent with intercalation of retinol molecules into the bilayer interior. The results for the mixed PC/PE bilayers indicate that the presence of retinol caused lateral separation of PE- and retinol-enriched regions.  相似文献   

14.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

15.
Cholesterol dynamics in membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Time-resolved fluorescence anisotropy of the sterol analogue, cholestatrienol, and 13C nuclear magnetic resonance (NMR) spin lattice relaxation time (T1c) measurements of [13C4] labeled cholesterol were exploited to determine the correlation times characterizing the major modes of motion of cholesterol in unsonicated phospholipid multilamellar liposomes. Two modes of motion were found to be important: (a) rotational diffusion and (b) time dependence of the orientation of the director for axial diffusion, or "wobble." From the time-resolved fluorescence anisotropy decays of cholestatrienol in egg phosphatidylcholine (PC) bilayers, a value for tau perpendicular, the correlation time for wobble, of 0.9 x 10(-9) s and a value for S perpendicular, the order parameter characterizing the same motion, of 0.45 s were calculated. Both tau perpendicular and S perpendicular were relatively insensitive to temperature and cholesterol content of the membranes. The T1c measurements of [13C4] labeled cholesterol did not provide a quantitative determination of tau parallel, the correlation time for axial diffusion. T1c from the lipid hydrocarbon chains suggested a value for tau perpendicular similar to that for cholesterol. Steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in a variety of pure and mixed lipid multilamellar liposomes. Both the lipid headgroups and the lipid hydrocarbons chains contributed to the determination of the sterol environment in the membrane, as revealed by these fluorescence measurements. In particular, effects of the phosphatidylethanolamine (PE) headgroup and of multiple unsaturation in the lipid hydrocarbon chains were observed. However, while the steady-state anisotropy was sensitive to these factors, the time-resolved fluorescence analysis indicated that tau perpendicular was not strongly affected by the lipid composition of the membrane. S perpendicular may be increased by the presence of PE. Both steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in three biological membranes: bovine rod outer segment (ROS) disk membranes, human erythrocyte plasma membranes, and light rabbit muscle sarcoplasmic reticulum membranes. In the ROS disk membranes the value for S perpendicular was marginally higher than in the PC membranes, perhaps reflecting the influence of PE. The dramatic difference noted was in the value for tau perpendicular. In both the ROS disk membranes and the erythrocyte membranes, tau perpendicular was one-third to one-fifth of tau perpendicular in the phospholipid bilayers. This result may reveal an influence of membrane proteins on sterol behavior.  相似文献   

16.
Spectrin, a major component of the membrane skeletal meshwork of metazoan cells, is implicated to associate with membrane domains and is known to act as a scaffold for stabilization and activation of different signalling modules. We have studied the effect of GM1 (monosialotetrahexosyl ganglioside), a well-known model ganglioside and a signalling moiety, on the interaction of non-erythroid brain spectrin with both saturated and unsaturated aminophospholipids by spectroscopic methods. We observe that GM1 modulates brain spectrin-aminophospholipid interaction to the greatest degree whereas its effect on erythroid spectrin is not as pronounced. Fluorescence quenching studies show that brain spectrin interacts with DMPC/DMPE-based vesicles with a 10-fold increased affinity in presence of very low amounts of 2% and 5% GM1, and the extent of quenching decreases progressively in presence of increasing amounts of GM1. Interaction of brain spectrin with unsaturated membrane systems of DOPC/DOPE weakens in presence GM1. Increase in the mean lifetime of the Trp residues of brain spectrin in presence of GM1 indicates change in the microenvironment of spectrin, without affecting the secondary structure of the protein significantly. Studies on pressure – area isotherm of Langmuir-Blodgett monolayer and Brewster's angle microscopy show that GM1 has an expanding effect on the aminophospholipid monolayers, and ordered regions in DMPC/DMPE mixed monolayers are formed and are stabilized at higher pressure. GM1-induced fluidization of the phospholipid membranes and probable physical contact between bulky sugar head group of GM1 and spectrin, may explain the modulatory role of GM1 on aminophospholipid interactions with nonerythroid brain spectrin.  相似文献   

17.
We isolated a cholesterol-enriched membrane subpopulation from the so-called lipid raft fractions of Jurkat T-cells by taking advantage of its selective binding to a cholesterol-binding probe, BCtheta. The BCtheta-bound membrane subpopulation has a much higher cholesterol/phospholipid (C/P) molar ratio (approximately 1.0) than the BCtheta-unbound population in raft fractions (approximately 0.3). It contains not only the raft markers GM1 and flotillin, but also some T-cell receptor (TCR) signalling molecules, including Lck, Fyn and LAT. In addition, Csk and PAG, inhibitory molecules of the TCR signalling cascade, are also contained in the BCtheta-bound membranes. On the other hand, CD3epsilon, CD3zeta and Zap70 are localized in the BCtheta-unbound membranes, segregated from other TCR signalling molecules under nonstimulated conditions. However, upon stimulation of TCR, portions of CD3epsilon, CD3zeta and Zap70 are recruited to the BCtheta-bound membranes. The Triton X-100 concentration used for lipid raft preparation affects neither the C/P ratio nor protein composition of the BCtheta-bound membranes. These results show that our method is useful for isolating a particular cholesterol-rich membrane domain of T-cells, which could be a core domain controlling the TCR signalling cascade.  相似文献   

18.
Little is known about the lipid environment of lens fiber junctions, the plasma membrane structure proposed to be responsible for passage of low molecular weight metabolites between adjacent lens fiber cells. Plasma membranes of the ocular lens are especially rich in fiber junctions. The resistance of junctional domains to disruption by detergent or alkali treatment provides the opportunity to isolate a lens plasma membrane fraction enriched in fiber junctions. When examined by electron microscopy, the fiber junction fraction prepared from bovine lenses was enriched with junctional structures by about twofold when compared to total plasma membrane. We compared the protein, phospholipid, and cholesterol concentration of total plasma membrane with fiber junctional membrane from rat and cow lens and from aged normal cataractous human lenses. The principal finding was that junctional membrane contained 20-40% more total lipid than that of the total plasma membrane. This was due to a proportionate increase in the relative content (mg/mg protein) of both phospholipid and cholesterol. Exclusive of one exception (nucleus of bovine lens), the cholesterol/phospholipid molar ratios of the two fractions were similar. In the bovine nucleus, the cholesterol/phospholipid molar ratio was substantially higher in the fiber junctional-enriched membrane fraction than in the total plasma membrane, suggesting a special association of cholesterol with bovine nuclear fiber junctions. The relative lipid compositions of the plasma membrane and fiber junction-enriched fractions from human normal and cataractous lenses were similar, suggesting that human senile cataractogenesis involves changes in the lens plasma membrane more subtle than would be reflected by gross changes in the membrane lipid composition.  相似文献   

19.
The transient membrane lipid diacylglycerol (DG) is known to modify and destabilize phospholipid bilayers and can lead to the formation of nonbilayer structures. Since cholesterol forms a major fraction of many plasma membranes, we have investigated how it modifies the structural effects of DG on bilayers of egg phosphatidylcholine (PC) and egg phosphatidylethanolamine (PE). We view these systems as modelling the behaviour of local, DG-containing sites in membranes. Using X-ray diffraction, we have characterized the lamellar (L alpha) and inverse hexagonal (HII) structures that these ternary lipid mixtures form in excess aqueous solution. As the DG level increases, the lipid progresses from a single L alpha structure to a mixture of L alpha and HII, and then to a pure HII structure. This allows determination of the DG levels at which the HII transition begins, which we interpret as those levels that destabilize bilayers. In both PC and PE bilayers, the presence of 30 mol% cholesterol reduces the amounts of DG required to destabilize the bilayer structure. The destabilization can be translated into the number of neighbouring lipid molecules that a DG molecule perturbs, and of bilayer areas that it affects. The data show that the presence of cholesterol greatly enhances the perturbing effects of DG. We examine the possible role of DG in enzyme activation and membrane fusion.  相似文献   

20.
Lipid composition of the isolated rat intestinal microvillus membrane   总被引:13,自引:4,他引:9  
1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号