首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A factorial field experiment was used to assess the influence of soil-disturber mammals in the structure of a 9-year-old Mediterranean annual plant community subjected to different sheep grazing and irrigation regimes. We estimated the disturbance rate (mound building activity) by Mediterranean voles, their effects on vegetation and the mechanisms of these effects during a period of vole outbreak. The effects on vegetation were analysed at the levels of species, functional groups and plant community. Disturbance rate was high and voles can disturb the entire soil surface once every four or five years. The availability of certain trophic resources (perennial plants) appeared to drive vole expansion in the experimental plots and it was independent of the irrigation and grazing treatments. Mound building activities largely affected vegetation but conserved plot differences. Total vegetation cover, absolute cover of all functional groups, mean vegetation height and species richness were less on mounds than on undisturbed ground. These effects did not change the relative abundance of annuals, perennials, grasses and forbs. Only the relative abundance of small-seeded species decreased on mounds. As the proportion of these seeds was similar in both types of patches, we suggest that small-seeded species had more difficulties for germinating or emerging when they are buried during mound formation. Irrigation and sheep grazing promoted large changes in the vegetation parameters but these effects were, in general, similar on mounds and undisturbed ground. Our results show that the availability of germinable seeds may be the major limitation for mound revegetation, probably due to the scarcity of seeds existing at the depths from which soils are excavated. Our results also suggested a resource limitation on mounds. The results provide additional evidence that soil disturbances by small herbivore mammals exert relevant ecological effects on abandoned Mediterranean croplands. We discuss the ecological implications of vole mound-building activities for plant succession, plant species conservation and forage resource availability for livestock. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Since the mid 1990s, there has been a significant increase in the area of semi‐arid grasslands included in the National Reserve Systems in the Victorian Riverine Plain. This expansion has not been matched by an improved understanding of the alternate disturbance regimes that might produce better outcomes for native ecosystem conservation. Over the past 150 years, stock grazing has completely replaced fire in these grasslands. As a result, the impact of fire on native (and exotic) plant biodiversity is little understood. This study compared the current grazing regime (i.e. ‘status quo’) with burning and the removal of grazing (‘deferred’ management) across three grasslands in the Victorian Riverine Plain to determine the effects of short‐term exposure to alternate disturbances on community structure. Our results showed little change in species density, composition or abundance under the three disturbance treatments. A long exposure to stock grazing may have reduced the abundance of species likely to respond positively to burning. The cover of the biological soil crust responded positively to fire; such changes are known to significantly influence establishment and the functional composition of communities. As such, further investigation of the functional attributes of these communities may broaden our understanding of short‐term responses to alternate disturbance events. To better understand the utility of fire as a management tool, a long‐term commitment to expanding the implementation of this regime from its current extent will greatly increase the understanding of alternate disturbances in this landscape.  相似文献   

3.
Patch‐size distribution and plant cover are strongly associated to arid ecosystem functioning and may be a warning signal for the onset of desertification under changes in disturbance regimes. However, the interaction between regional productivity level and human‐induced disturbance regime as drivers for vegetation structure and dynamics remain poorly studied. We studied grazing disturbance effects on plant cover and patchiness in three plant communities located along a regional productivity gradient in Patagonia (Argentina): a semi‐desert (low‐productivity community), a shrub‐grass steppe (intermediate‐productivity community) and a grass steppe (high‐productivity community). We sampled paddocks with different sheep grazing pressure (continuous disturbance gradients) in all three communities. In each paddock, the presence or absence of perennial vegetation was recorded every 10 cm along a 50 m transect. Grazing effects on vegetation structure depended on the community and its association to the regional productivity. Grazing decreased total plant cover while increasing both the frequency of small patches and the inter‐patch distance in all communities. However, the size of these effects was the greatest in the high‐productivity community. Dominant species responses to grazing explained vegetation patch‐ and inter‐patch‐size distribution patterns. As productivity decreases, dominant species showed a higher degree of grazing resistance, probably because traits of species adapted to high aridity allow them to resist herbivore disturbance. In conclusion, our findings suggest that regional productivity mediates grazing disturbance impacts on vegetation mosaic. The changes within the same range of grazing pressure have higher effects on communities found in environments with higher productivity, markedly promoting their desertification. Understanding the complex interactions between environmental aridity and human‐induced disturbances is a key aspect for maintaining patchiness structure and dynamics, which has important implications for drylands management.  相似文献   

4.
Regional differences in Caragana microphylla density in the Mongolian steppes were explained by considering multiple abiotic and biotic factors collectively, including aridity gradients, grazing regimes, fire disturbance, and interspecific interactions. In the central and eastern Mongolian steppes, we collected vegetation data from 127 sites. Along 250-m line transects, the hit frequencies of C. microphylla and tall-grass species were recorded. Ancillary data included weather information, livestock populations, fire occurrence maps, and herder camp locations. Based on the steppe types and disturbance regimes, the sites were classified into 12 sub-groups. The data were statistically analyzed at the site, county, and sub-group levels. The natural C. microphylla density decreased with climatic aridity from forb-steppes to semi-desert steppes, but this pattern was not observed at grazed and burned sites. Livestock grazing decreased C. microphylla density, but this effect was considerably confounded by aridity effects, especially in the central steppes, making the relationship between C. microphylla and livestock densities complex. Although fire appeared to be an important factor in the eastern steppes, the mechanism of its effect on C. microphylla density was unclear, because the fire–shrub interaction is influenced by the tall-grass recovery process after fire. Based on our results, we propose that two different confounding effects, namely aridity versus grazing and fire versus interspecific interactions, play important roles in determining the spatial distribution of C. microphylla density in the central and eastern Mongolian steppes, respectively.  相似文献   

5.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

6.
Forb populations were sampled on Kansas tallgrass prairie to examine the effects of native (bison) and domestic (cattle) ungulates on plant growth, reproduction, and species abundances. Five locally and regionally abundant native tallgrass prairie perennials, Baptisia bracteata, Oenothera speciosa, Vernonia baldwinii, Solidago missouriensis, and Salvia azurea, were selected for study. Replicate watershed-level treatments included three grazing regimes (ungrazed, grazed by cattle, and grazed by bison), and two spring fire frequencies (annually burned and burned at 4-yr intervals). The results show that forb responses to ungulates in tallgrass prairie are complex and vary significantly among plant species, ungulate species, fire regimes, and plant life history stages. Some forbs (e.g., B. bracteata, O. speciosa, and V. baldwinii) increased in growth and reproduction in grazed sites, indicating competitive release in response to selective grazing of the dominant warm-season matrix grasses. Forbs that reduced performance in grazed sites are likely negatively affected by disturbances generated by ungulate nongrazing activities, because none of the forbs studied were directly consumed by bison or cattle. Large grazers had no detectable effect on the frequency of plant damage by other herbivores or pathogens. Significant effects of grazers on patterns of flowering and seed production were not congruent with their effects on population densities, indicating that variation in sexual reproduction plays a minor role in regulating local population abundances. Furthermore, the native and domestic ungulates differ significantly in their effects on forb growth and reproduction.  相似文献   

7.
Abstract. Grassland communities are increasingly recognized as disturbance‐dependent ecosystems, yet there are few replicated, multi‐site studies documenting vegetation responses to varying frequencies and types of grassland disturbance. Even so, land managers frequently manipulate disturbance regimes in an attempt to favour native grassland plants over exotic species. We conducted a factorial experiment testing three frequencies of clipping combined with litter accumulation, litter removal, and soil disturbance within the highly threatened California coastal prairie plant community. We monitored the response of native/exotic, grass/forb plant guilds once a year for four years. More frequent clipping reduced cover of exotic grasses and favoured exotic forbs, whereas native species were largely unaffected by clipping frequency. Litter accumulation, litter removal, and soil disturbance did not affect vegetation composition. Effects of litter accumulation may take longer than our experiment allowed, and soil disturbance due to our treatments was not sufficiently strong to show consistent effects relative to mammalian soil disturbance. Treatment response of some plant guilds differed among sites, highlighting the importance of replicating experiments at several sites before recommending conservation management practices.  相似文献   

8.
Large grazing herbivores can change fire regimes by altering fuel types and abundance, particularly in savanna biomes where the dominant fuel is grass. The use of herbivores as a fire management tool is receiving increasing consideration globally, but this intervention has a limited evidence‐base and is controversial because of potential deleterious ecological effects. These issues are well illustrated by the political and scientific debate about the capacity of cattle grazing to reduce fire hazard in the Victorian Alps of Australia; there have been remarkably few scientific studies to illuminate this issue. Here we use remote sensing and geographic information system analysis to determine the effect of active grazing licences on fire severity (crown scorch) in eucalypt forests and woodlands following large fires in the Alps during the summers of 2002/2003 and 2006/2007. Our statistical analyses, which controlled for spatial autocorrelation, found crown scorch was strongly related to vegetation type but there was no evidence that cattle grazing reduced fire severity. There was some evidence that grazing could increase fire severity by possibly changing fuel arrays. Such landscape analyses are a critical approach given that large‐scale grazing × fire trials are prohibitively expensive and impractical to conduct.  相似文献   

9.
Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north‐western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land‐use practice over the past 6000 years. We compare the beta‐diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat‐specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic ‘heterogenisation’ after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land‐use practices can instead be crucial for the maintenance of the diversity and ecological function of a seminatural ecosystem. The species that established after prescribed burning were heathland specialists with relatively narrow geographical ranges.  相似文献   

10.
In grasslands worldwide, grazing by ungulates and periodic fires are important forces affecting resource availability and plant community structure. It is not clear, however, whether changes in community structure are the direct effects of the disturbance (i.e. fire and grazing) or are mediated indirectly through changes in resource abundance and availability. In North American tallgrass prairies, fire and grazing often have disparate effects on plant resources and plant diversity, yet, little is known about the individual and interactive effects of fire and grazing on resource variability and how that variability relates to heterogeneity in plant community structure, particularly at small scales. We conducted a field study to determine the interactive effects of different long-term fire regimes (annual vs four-year fire frequency) and grazing by native ungulates ( Bos bison ) on small-scale plant community structure and resource variability (N and light) in native tallgrass prairie. Grazing enhanced light and nitrogen availability, but did not affect small-scale resource variability. In addition, grazing reduced the dominance of C4 grasses which enhanced species richness, diversity and community heterogeneity. In contrast, annual fire increased community dominance and reduced species richness and diversity, particularly in the absence of grazing, but had no effect on community heterogeneity, resource availability and resource variability. Variability in the abundance of resources showed no relationship with community heterogeneity at the scale measured in this study, however we found a relationship between community dominance and heterogeneity. Therefore, we conclude that grazing generated small-scale community heterogeneity in this mesic grassland by directly affecting plant community dominance, rather than indirectly through changes in resource variability.  相似文献   

11.
Grazing and browsing by sheep and goats has been an important anthropogenic influence on ecosystems in the Mediterranean region for centuries. This influence has changed significantly in recent decades, with a general shift from range grazing to the penning of animals. The intermediate disturbance hypothesis (IDH) proposes that perturbation - including anthropogenic disturbance - is the norm for Mediterranean ecosystems, and that higher species diversity is found under conditions of continuous, moderate disturbance. Here we test the IDH as it relates to grazing of scrub and open forest habitats in Cyprus, while also testing for the effects of fire. We carried out surveys of breeding birds and vegetation at 48 study sites in scrub and open woodland across Cyprus. We estimated relative grazing pressure (past and present) and fire history at these sites, and tested for associations between these factors, breeding bird species richness and perennial vegetation diversity. We found moderate current grazing reduces density of lower and middle level scrub, and a higher level of diversity of perennial vegetation at moderately over intensively grazed sites. We found that moderate historical grazing pressure had a positive influence on richness of breeding bird species in lower scrub habitat such as phrygana, but that this effect was weaker the taller and denser the habitat. By contrast, current grazing pressure had a negative effect on species richness in lower scrub, but species richness in grazed habitats was higher in denser, taller scrub habitat such as garrigue and maquis. Our study suggests grazing plays an important role in maintaining habitat heterogeneity but the impact on avian species richness depends on the density and height of the vegetation.  相似文献   

12.
Managing multiple, interacting disturbances is a key challenge to biodiversity conservation, and one that will only increase as global change drivers continue to alter disturbance regimes. Theoretical studies have highlighted the importance of a mechanistic understanding of stressor interactions for improving the prediction and management of interactive effects. However, many conservation studies are not designed or interpreted in the context of theory and instead focus on case‐specific management questions. This is a problem as it means that few studies test the relationships highlighted in theoretical models as being important for ecological management. We explore the extent of this problem among studies of interacting disturbances by reviewing recent experimental studies of the interaction between fire and grazing in terrestrial ecosystems. Interactions between fire and grazing can occur via a number of pathways; one disturbance can modify the other's likelihood, intensity or spatial distribution, or one disturbance can alter the other's impacts on individual organisms. The strength of such interactions will vary depending on disturbance attributes (e.g. size or intensity), and this variation is likely to be nonlinear. We show that few experiments testing fire–grazing interactions are able to identify the mechanistic pathway driving an observed interaction, and most are unable to detect nonlinear effects. We demonstrate how these limitations compromise the ability of experimental studies to effectively inform ecological management. We propose a series of adjustments to the design of disturbance interaction experiments that would enable tests of key theoretical pathways and provide the deeper ecological understanding necessary for effective management. Such considerations are relevant to studies of a broad range of ecological interactions and are critical to informing the management of disturbance regimes in the context of accelerating global change.  相似文献   

13.
Abstract In eastern Australia the practice of grazing cattle in eucalypt forests and woodlands, as a supplementary activity to farmland grazing, is widespread. It is typically accompanied by burning at frequent intervals by graziers to promote more nutritious and digestible growth of the ground cover for their livestock. Collectively, these forest grazing practices affect understorey structure, which in turn affects other biotic and abiotic components of these ecosystems. In order to test how significant the effects of forest grazing practices are relative to the effects of other management practices and environmental variables and the degree to which grazing practices determine understorey vegetation structure, we surveyed 58 sites on the northern tablelands of New South Wales, Australia. All sites were located in eucalypt forest and were stratified by grazing status (presence or absence): time since logging, time since wildfire, geology, aspect, slope and topographic position. At each site an index of vegetation complexity and the most abundant plant species were recorded. The data were analysed by a backwards stepwise multiple regression. Grazing practices had the greatest influence on understorey vegetation complexity of any of the measured attributes. The grazed sites were characterized by a significantly lower vegetation complexity score, different dominant understorey species, reduced or absent shrub layers, and an open, simplified and more grassy understorey structure compared with ungrazed sites. Time since logging and time since wildfire also significantly affected understorey structure. Our results indicate that cattle grazing practices (i.e. grazing and the associated frequent fire regimes) can have major effects on forest structure and composition at a regional level.  相似文献   

14.
Question: What are the effects of grazing abandonment on the vegetation composition of Estonian coastal wetlands? Location: Vormsi Island and Silma Nature Reserve in western Estonia, Europe. Methods: Local knowledge and field reconnaissance were used to identify current and historical management levels of wetland sites within the west Estonian study area. Nine study sites, with varying management histories, were selected comprising an area of 287 ha. A total of 198 quadrats were taken from 43 distinct vegetation patches in five of the sites. TWINSPAN analysis was used to identify community type, and a phytosociological key was constructed for character taxa. This vegetation classification was then applied within a GIS‐based context to classify all the study sites, using a ground survey technique and 1:2000 scale air photos. Results: We identified 11 different brackish coastal wetland community types. Indicator species were defined with community characteristics for the seven main vegetation types readily recognisable in the field. Coastal wet grasslands were most extensive in grazed sites, or sites that had been more intensively grazed, while abandoned sites were largely composed of Phragmites australis stands, tall grassland, and scrub. Site variations based on vegetation composition were significantly correlated with past grazing intensity. Plant community types showed significant edaphic differences, with particularly low soil moisture and high conductivity and pH for open pioneer patches compared to other vegetation types. Conclusion: Abandonment of traditionally grazed coastal grasslands threatens their characteristic biodiversity. This study found that grazing abandonment reduced the extent of coastal wetland grasslands of particular conservation value. Nevertheless, plant species of conservation interest were found across the sequence of community types described. The study shows that grazing is an important factor influencing coastal wetland plant communities but suggests that vegetation distribution is affected by environmental variables, such as topography.  相似文献   

15.
Aim Using a long‐term data set we investigated the response of semi‐desert grasslands to altered disturbance regimes in conjunction with climate patterns. Specifically, we were interested in the response of a non‐native grass (Eragrostis lehmanniana), mesquite (Prosopis velutina), and native species to the reintroduction of fire and removal of livestock. Location The study site is located on the 45,360‐ha Buenos Aires National Wildlife Refuge (31°32′ N, 110°30′ W) in southern Arizona, USA. In 1985, livestock were removed and prescribed fires were reintroduced to this semi‐desert grassland dominated by non‐native grasses and encroaching mesquite trees. Methods Plant species cover was monitored along 38, 30‐m transects five times over a period of 15 years. Data were analysed using principal components analysis on the variance–covariance and correlation matrix, multivariate analysis of variance for changes over time in relation to environmental data, and analysis of variance for altered disturbance regimes. Results Reintroduction of fire and removal of livestock have not led to an increase in native species diversity or a decrease in non‐native grasses or mesquite. The cover of non‐native grass was influenced by soil type in 1993. Main conclusions Variability of plant community richness, diversity, and cover over time appear to be most closely linked to fluctuations in precipitation rather than human‐altered disturbance regimes. The effects of altered grazing and fire regimes are likely confounded by complex interactions with climatic factors in systems significantly altered from their original physiognomy.  相似文献   

16.
Worldwide, savanna remnants are losing acreage due to species replacement with shade-tolerant midstory forest species as a response to decades of fire suppression. Because canopy closes grasses and other easily ignitable fuels decline, therefore, fire, when reintroduced after years of absence, is not always effective at restoring the open structure original to these communities. Our study sought to determine if managed grazing is an alternative tool for reducing shrub densities and restoring savanna structure without the impacts on soils and native vegetation observed with unmanaged grazing. We compared effects of fire and managed grazing on shrub and herb composition within degraded oak savanna and tallgrass prairie of the U.S. Upper Midwest using a randomized complete block design. The vegetation response to treatments differed by species and by vegetation type. Total shrub stem densities declined 44% in grazed and 68% in burned paddocks within savanna and by 33% for both treatments within prairie. Within savanna, cattle reduced stem densities of Rubus spp. 97%, whereas fire reduced Ribes missouriense stems 96%. Both fire and grazing were effective at reducing stem numbers for several other shrub species but not to the same degree. Native forbs were suppressed in grazed savanna paddocks, as were native grasses in grazed prairie paddocks along with a minor increase of exotic forbs. We did not observe changes in soil bulk density. We conclude that managed grazing can serve as a valuable supplement but not as a replacement to fire for controlling shrubs in these systems.  相似文献   

17.
Abstract Two species of endangered Brassicaceae, Barbarea australis and Lepidium hyssopifolium, occur in a few small populations in Tasmania. The former species is associated with streams where it occurs in vegetation with numerous exotics. The latter species is usually found in the root zone of exotic large trees, usually on roadsides, and often in the absence of many other native species. Populations of both species have disappeared since European settlement, some in the last two decades. Both species are rapid and prolific producers of easily germinated seed. Both species are absent from places grazed moderately or intensively by sheep or cattle. The establishment of new individuals of Lepidium occurs only on relatively bare ground. The species is tolerant of root competition and intolerant of above ground competition. It will also establish from soil-stored seed after mechanical disturbance. Its future is linked to the survival of grazing-free locations where above ground competition from herbs and grasses is subdued. Barbarea is a ruderal that requires freedom from stock grazing for its persistence in Tasmanian riparian habitats. These results reinforce the importance of some degraded ecosystems for biodiversity conservation, and the critical role of disturbance regimes in influencing the survival or extinction of a subset of native plant species. In the fragmented and variegated landscapes of today, weedy natives cannot necessarily be expected to survive in non-weedy environments.  相似文献   

18.
The ruderal strategy is widely shared among non-native plants, providing a general explanation for the commonly observed positive effects of disturbance on invasions. How native ruderals respond to disturbance and how their abundance compares to that of non-native ruderals remains, however, poorly understood. Similarly, little is known about the role that disturbance type plays in the coexistence between native and non-native ruderals. We proposed that natural disturbance favors native over non-native ruderals, whereas novel anthropogenic disturbance favors non-natives over natives. To assess our general hypothesis, we conducted extensive field samplings in which we measured relative abundance, richness, and diversity of native and non-native ruderals in sites with natural and anthropogenic disturbance in central Argentina, a system where the ruderal strategy is common to a large number of native and non-native species. We found that natives dominated ruderal communities growing in recently burned grasslands, whereas non-natives dominated in roadsides. Additionally, the richness and diversity of native ruderal species were much greater than those of non-natives in sites with fire and in sites with grazing, but species richness and diversity did not differ between groups in roadsides. Because vegetation evolved with fire in our system and, in contrast, the construction and maintenance of roads is recent in it, these results support our hypothesis. Our work indicates that the ruderal strategy does not seem to suffice to explain why disturbance facilitates invasions. According to our data, species origin interacts with disturbance type to determine dominance in communities with coexisting native and non-native ruderals.  相似文献   

19.
Grasslands are one of the most endangered and degraded ecosystems globally. Switches in disturbance type can restore grassland function and improve conservation outcomes for fauna, but land-use legacies can limit the capacity of biota to respond positively to shifts in disturbance type, making it difficult to predict ecological outcomes. In semi-arid grasslands of South-Eastern Australia, habitat for grassland birds is managed using livestock grazing, a practice that has continued for >150 years. It is unknown if outcomes for birds can be improved by a switch in disturbance type as alternatives to livestock grazing have not been explored. We compare the effects of status-quo livestock grazing with alternative biomass management tools (no management, ‘crash’ grazing, planned fire) on birds, vegetation structure, and food resources using a BACI design across 3 years (2017–2019). We found crash grazing and fire produced more open, shorter grassy swards, with less exotic grass cover, compared to status-quo grazing or disturbance exclusion. Preferred habitat structure for the critically endangered plains-wanderer (Pedionomus torquatus) was maximized by status-quo grazing. Grassland birds responded in opposing ways to a disturbance switch. Brown songlarks (Megalurus cruralis) and Horsfield's bushlarks (Mirafra javanica) responded positively to disturbance exclusion, while stubble quail (Coturnix pectoralis) responded negatively to crash grazing. Australasian pipits (Anthus novaeseelandiae) were more frequent in response to status-quo grazing. Our findings suggest that multiple disturbance types should be used if the aim is to promote the spectrum of vegetation structures and food sources required to support a diverse grassland bird community in semi-arid grasslands of Australia.  相似文献   

20.
There is an enormous body of literature on plant invasions, including many investigations of the types of introduced species that are most likely to invade natural ecosystems. In this study we turn invasion biology upside down, and ask what sort of native species colonise novel anthropogenic habitats such as roadside lawns, infrequently tended road shoulders, railway embankments and fire trails. We quantified species richness and cover in roadside lawns and infrequently tended road shoulders in five regions of New South Wales, Australia. The native vegetation in these regions included sclerophyll forest, fertile and infertile Eucalypt‐dominated woodlands, rainforest, and semi‐arid woodland. We performed a complementary survey of sites spanning five disturbance levels within the region containing sclerophyll forest vegetation. Although many non‐native species were present in disturbed, novel habitats, a total of 136 native species were also found. Most of these native species were in sites with low levels of disturbance (fire trails and railway embankments), but 35 native species were found to colonise roadside lawns, our most highly‐disturbed vegetation type. There was a significant negative relationship between the disturbance level in novel habitats and the number and cover of native species. Native species that colonised novel habitats were disproportionately likely be generalist species whose natural habitat includes both high and low light and high and low disturbance conditions. The native species colonising novel habitats also tended to have traits associated with a fast life‐history, including short stature and small seeds. A surprisingly high number of native plant species are colonising novel, anthropogenic habitats. Our findings highlight the potential importance of urban ecosystems for conservation and restoration biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号