首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The karyotypes of two populations ofFestucopsis serpentini (2n = 2x = 14) endemic to Albania were investigated in detail by Giemsa C- and N-banding, AgNO3 staining, and in situ hybridization with an rDNA probe. The complements consisted of 14 large chromosomes, 10 metacentric and 4 SAT-chromosomes, a metacentric and a submetacentric pair. SAT-chromosomes from one population carried exclusively minute satellites, whereas SAT-chromosomes from another population also carried larger polymorphic satellites, suggesting a geographical differentiation. The existence of four chromosomes with nucleolus forming activity was established through AgNO3 staining; however, the rDNA probe additionally hybridized to intercalary positions in the short arms of two metacentric chromosomes revealing two inactive rDNA sites. C-banding patterns comprised from zero and up to four very small to larger, generally telomeric bands per chromosome giving low levels of constitutive heterochromatin. Similarities in chromosome morphology and C-banding patterns identified the homologous relationships of all chromosomes in one population, but of three pairs only in the other. Reliable identification of homologous chromosomes between plants was only possible for the SAT-chromosomes. A comparison between the C-banded karyotypes ofF. serpentini andPeridictyon sanctum supports their position in two genera.  相似文献   

2.
The karyotypes of diploidP. fragilis subsp.villosus (2n = 2x = 14) and tetraploid subsp.secaliformis (2n = 4x = 28) were studied by Giemsa C- and N-banding, and AgNO3 staining and compared with the karyotype of subsp.fragilis (2x). The complements of subsp.villosus and subsp.fragilis were similar, with 8 metacentric and 6 SAT-chromosomes, one metacentric and two submetacentric pairs, with small to minute, polymorphic, heterochromatic satellites. The complement of subsp.secaliformis on the whole agreed with a doubling of the complement of diploidP. fragilis, suggesting autopolyploidy. Only the presence of 12 nucleoli in interphases identified 6 SAT-chromosome pairs. In subsp.villosus one or two extra micronucleoli indicated a chromosome pair with very low nucleolusforming activity, bringing the number of SAT-chromosome pairs to 4. This number may be a characteristc ofPsathyrostachys. Besides very small, inconsistently observed bands, the C-banding pattern consisted of 0–3 small bands per chromosome at intercalary and terminal locations, and at NORs. The level of banding pattern polymorphism was low, but enough to indicate that the taxa are outbreeders. Similarities in chromosome morphology and C-banding patterns identified homology of all chromosomes of subsp.villosus, but for 12 pairs only in subsp.secaliformis. Between plants, reliable identification of homology and homoeology (subsp.secaliformis) was possible only for the SAT-chromosomes and the shortest metacentrics. Chromocentres were very small and the amount of constitutive heterochromatin was low. N-banding stained chromosomes uniformly. The basic karyotypes of theP. fragilis taxa were similar to those ofP. juncea, P. lanuginosa, andP. stoloniformis supporting a close relationship and the presence of a common genome, N. NORs had different nucleolus-forming activities. Meiotic analysis demonstrated a high level of bivalent pairing in the three taxa. A chromosomal rearrangement was suggested in subsp.villosus. The low multivalent frequency in subsp.secaliformis indicates the presence of a pairing regulation mechanism. The majority of chiasmata were interstitial. Pollen grain size discriminated between diploid and tetraploid taxa. The existence of a diploid cytotype of subsp.secaliformis is supported by pollen measurements of herbarium material.  相似文献   

3.
The karyotypes ofElymus dentatus from Kashmir andE. glaucescens from Tierra del Fuego, both carrying genomesS andH, were investigated by C- and N-banding. Both taxa had 2n = 4x = 28. The karyotype ofE. dentatus was symmetrical with large chromosomes. It had 18 metacentric, four submetacentric and six satellited chromosomes. The karyotype ofE. glaucescens resembled that ofE. dentatus, but a satellited chromosome pair was replaced by a morphologically similar, non-satellited pair. The C-banding patterns of both species had from one to five conspicuous and a few inconspicuous bands per chromosome. N-banding differentiated the chromosomes of the constituent genomes by producing bands in theH genome only. TheS genomes of both species were similar with five metacentric and two satellited chromosomes having most conspicuous C-bands at telomeric and distal positions. They resembled theS genome of the genusPseudoroegneria. TheH genomes had four similar metacentric and two submetacentric chromosomes. The seventhH genome chromosome ofE. dentatus was satellited, that ofE. glaucescens nonsatellited, but otherwise morphologically similar. The C-bands were distributed at no preferential positions. TheH genome ofE. dentatus resembles theH genomes of some diploidHordeum taxa.  相似文献   

4.
The somatic karyotypes of 10 taxa belonging toAllium subgen.Molium (Liliaceae) from the Mediterranean area have been investigated using Giemsa C-band and fluorochrome (Hoechst, Quinacrine) banding techniques. A wide range of banding patterns has been revealed. InAllium moly (2n = 14),A. oreophilum (2n = 16) andA. paradoxum (2n = 16) C-banding is restricted to a region on each side of the nucleolar organisers and the satellites show reduced fluorescence with fluorochromes. The satellites are also C-banded and with reduced fluorescence inA. triquetrum (2n = 18), but two other chromosome pairs also have telomeric bands which are not distinguished by fluorochrome treatment. InA. erdelii (2n = 16) 4 pairs of metacentric chromosomes have telomeric C-bands while 2 pairs of telocentric chromosomes have centromeric C-banding. InA. subhirsutum (2n = 14),A. neapolitanum (2n = 28),A. trifoliatum subsp.hirsutum (2n = 14) andA. trifoliatum subsp.trifoliatum (2n = 21) chromosomes with long centromeres, consisting of a centromere and nucleolar organiser are positively C-banded on each side of the constriction. InA. subhirsutum banding is confined to the pair of chromosomes with this feature, whereas inA. neapolitanum one additional chromosome pair has telomeric bands and inA. trifoliatum there are varying numbers of chromosomes with centromeric and telomeric bands, depending on the subspecies.A. zebdanense (2n = 18) shows no C-bands. The banding patterns in this subgenus are compared with those recorded for otherAllium species and with the sectional divisions in the genus. Evidence from the banding patterns for allopolyploidy inA. trifoliatum subsp.trifoliatum andA. neapolitanum is discussed.  相似文献   

5.
Karyotype attributes and heterochromatin distribution were used to characterize fourteen taxa of the subtribeLimodorinae (Orchidaceae). The karyotypes were established using morphometrical parameters following Feulgen staining and C-banding. No significant differences in heterochromatin content were found between specimens collected from various sites. Four species of theEpipactis helleborine group possess some chromosome pairs with quite similar heterochromatin patterns; some differences were found inE. distans with respect to other species of this group.Epipactis palustris differed significantly from otherEpipactis species in its different karyotype and its numerous terminal C-bands. The largest differences from the other genera were shown inLimodorum as far as karyomorphology and heterochromatin patterns were concerned. C-band distribution indicated similarity among non-homologous chromosomes, supporting a possible palaeo-polyploid origin for theCephalanthera andEpipactis karyotypes.  相似文献   

6.
Fluorochrome chromosome banding is applied for the first time to 15 samples of five cultivatedCapsicum species, all with 2n = 24, and allows a detailed analysis of the karyotypes (Tables 2–3, Fig. 8). Banding patterns differ between cytotypes, species and groups, reflecting the dynamics of chromosomal differentiation and evolutionary divergence. Taxa have from 1 to 4 NOR-bearing satellited chromosome pairs and exhibit increasing numbers of terminal (rarely intercalary and indistinct centromeric) heterochromatic fluorescent bands. Amounts of heterochromatin (expressed in % of karyotype length) increase from the group withC. annuum (1.80–2.88),C. chinense (3.91–5.52), andC. frutescens (5.55) toC. baccatum (7.30–7.56), and finally toC. pubescens (18.95). In all taxa CMA+DAPI—(GC-rich) constitutive heterochromatin dominates, onlyC. pubescens has an additional CMAo DAPI+ (AT-rich) band. The fluorochrome bands generally (but not completely) correspond to the Giemsa C-bands. Structural heterozygosity can be demonstrated but is not prominent. The independent origin of at least three evolutionary lines leading to the cultivated taxa ofCapsicum is supported.Chromosome studies inCapsicum (Solanaceae), V. For the fourth part seeMoscone & al. 1995.  相似文献   

7.
The karyotypes ofP. juncea (Elymus junceus) andP. huashanica (both outbreeders) were investigated by Feulgen-staining and by C-, N-, and Agbanding, based on a single plant in cach case. Both species have 2n=2x=14 and large chromosomes, possibly a generic character. The karyotype ofP. juncea has 8 metacentrics and 6 SAT-chromosomes with minute, heterochromatic satellites while that ofP. huashanica has 9 metacentrics and 5 SAT-chromosomes only, 2 of which with small, heterochromatic satellites. The C-banding patterns ofP. juncea chromosomes comprise from one to five, mostly small, bands at distal, and terminal positions, while those ofP. huashanica chromosomes are characterized by large telomeric bands in most arms. Banding patterns and chromosome morphology allow identification of the homologues of the seven chromosome pairs inP. juncea, but of two pairs inP. huashanica only. The patterns of both taxa are polymorphic, supporting that both taxa are outbreeders. The karyotypic characters suggest thatP. juncea is more closely related toP. fragilis than either is toP. huashanica. N-banding stains weakly. Silver nitrate staining demonstrates that nucleolus organizers of both species have different nucleolus forming capacities. The presence of micronucleoli suggests that both species have an extra unidentified chromosome with nucleolus forming capacity.  相似文献   

8.
The karyotype and the C-banding pattern in two species ofHexastylis andAsarum epigynum were analysed in detail, and the results obtained were compared with those of the other species ofAsarum, Asiasarum andHeterotropa previously reported. The present results were partially different from the previous reports related to the karyotypes of these species. The karyotype observed in two species ofHexastylis (2n=26) was represented by ten pairs of metacentric chromosomes and three pairs of small subtelocentric chromosomes, which is very similar to that ofAsiasarum in eastern Asia. The C-banding patterns ofHexastylis andAsiasarum, however, were clearly different from each other. A striking difference was found in one of the three pairs of small subtelocentric chromosomes. A Formosan speciesAsarum epigynum had the somatic chromosome number 2n=12 and a highly asymmetrical karyotype composed of mainly subtelocentric chromosomes. These karyological features were remarkably different from those of the other groups inAsarum s.l.  相似文献   

9.
Studies on chromosome numbers and karyotypes in Orchid taxa from Apulia (Italy) revealed triploid complements inOphrys tenthredinifera andOrchis italica. InO. tenthredinifera there is no significant difference between the diploid and the triploid karyotypes. The tetraploid cytotype ofAnacamptis pyramidalis forms 36 bivalents during metaphase I in embryo sac mother cells. Aneuploidy was noticed inOphrys bertolonii ×O. tarentina with chromosome numbers n = 19 and 2n = 38. There were diploid (2n = 2x = 36), tetraploid (2n = 4x = 72), hexaploid (2n = 6x = 108) and octoploid (2n = 8x = 144) cells in the ovary wall of the diploid hybridOphrys apulica ×O. bombyliflora. Evolutionary trends inOphrys andOrchis chromosomes are discussed.  相似文献   

10.
Detailed studies of the chromosomes of the three Austrian species of the genusCephalanthera showed them all to have basically similar karyotypes. BothC. damasonium (2n = 36) andC. longifolia (2n = 32) have three large and several classes of smaller chromosome pairs. The karyotype ofC. rubra (2n = 44) is composed of four large and several groups of smaller pairs. The heterochromatin in these species amounts to about 10% of total karyotype length. All the chromosomes have Giemsa-positive centromeres, but only a few have intercalary or terminal bands. Using differential fluorescent staining with DAPI/actinomycin D, quinacrine/actinomycin D (both A-T specific), and chromomycin A3/distamycin A (G-C specific) three different types of major heterochromatic bands can be characterized in respect of their satellite DNA composition: highly A-T rich, slightly A-T rich, and very G-C rich. The chromosomes ofC. longifolia contain more A-T rich C-bands than those ofC. damasonium, while the latter's have more G-C rich heterochromatin. In both species several C-bands appear as secondary constrictions or gaps in the Feulgen-stained chromosomes, but most likely, in each species there is only one pair of chromosomes where the secondary constrictions function as nucleolus organizing regions. No major intraspecific variation could be observed except on one small chromosome pair ofC. longifolia which had a heteromorphic C-band in most individuals. Possible pathways of karyotype evolution involving polyploidy and Robertsonian events are discussed.  相似文献   

11.
Crepis incarnata subsp.dinarica (G. Beck)Hayek is nowadays considered as a subspecies ofC. praemorsa (L.)Tausch. Comparative analyses of Feulgen karyotypes demonstrate great similarities, but remarkable differences in the presence and the distribution of the constitutive heterochromatin in the two taxa are detected by using the Giemsa differential staining technique (C-banding). This favours their specific distinctness.  相似文献   

12.
The karyotype ofCestrum aurantiacum was analyzed for the presence of coldsensitive regions (CSRs) and other types of constitutive heterochromatin. A range of techniques was employed including the fluorescent DAPI, chromomycin/DAPI double staining and actinomycin D/DAPI counter-staining, and the non-fluorescent C-banding applied as single or sequential staining, sequential N-banding and silver impregnation. Four classes of constitutive heterochromatin were recognized: CSRs, nucleolar organizers, non-nucleolar chromomycin-positive bands, and indifferently fluorescent bands. The banded karyotype ofC. aurantiacum is compared with those of otherCestrum species. The sectionsHabrothamnus andCestrum are not karyologically distinct.  相似文献   

13.
Chromosome analysis of nine species ofHaemanthus (2n = 16) and four species ofScadoxus (2n = 18), using conventional stains, Quinacrine fluorescence and C-banding, has shown that the two genera do not possess significant amounts of constitutive heterochromatin. The two genera are closely related and differ in respect of a translocation which has resulted in the dysploid reduction in chromosome number from 2n = 18 inScadoxus to 2n = 16 inHaemanthus.  相似文献   

14.
The karyotypes of the three annuals,Microseris bigelovii, M. douglasii andM. pygmaea, consist of 2n = 18, small, submetacentric chromosomes. Length, centromere position, C-banding pattern, silver staining of NOR's, and the use of base specific fluorochromes, allow the identification of four of the nine chromosome pairs. The banding pattern ofM. bigelovii andM. pygmaea is identical, but intraspecific differences are found between strains ofM. douglasii.  相似文献   

15.
Chromosome counts are presented for 12 genera and 20 species of AustralianAnnonaceae (all diploid with 2n = 16 or 18; Table 1) and two species ofEupomatiaceae (2n = 20, partly from Papua New Guinea). Detailed studies on interphase nuclear structure, condensing behaviour of chromosomes, and fluorochrome and Giemsa C-banding patterns also includeHimantandraceae (Galbulimima) andAustrobaileyaceae. — Eupomatiaceae completely correspond withAnnonaceae karyologically, their base number 2n = 20 is interpreted to have evolved from 2n = 18 by ascending dysploidy from common ancestors.Eupomatia laurina andE. benettii differ in DNA and constitutive heterochromatin (hc) quantity; their evolution from high to low DNA content probably corresponds to general progressions inMagnoliidae. Austrobaileya has nuclei of the presumably primitive Tetrameranthus type which is closely related to that ofGalbulimima and several other primitive taxa inMagnoliidae. Karyomorphology and other characters support the maintainance of two main branches within theMagnoliidae, Laurales andMagnoliales, withAustrobaileya probably intermediate; theWinteraceae appear more remote.—InAnnonaceae the reestablishment ofAncana is underlined by its chromosome number (2n = 18) the unexpected and specialized disulcate pollen, and various morphological characters which point to a close alliance with the Australian endemic generaFitzalania andHaplostichanthus (also disulcate) and the American genus pairSapranthus/Desmopsis; they are united in the provisionalSapranthus tribe, with a more distant position toFissistigma s. str. (2n = 16). AustralianAnnonaceae exhibit a high generic and a low species diversity; they can be considered as an ± old and partly impoverished outpost of the family with phytogeographical relationships to Asia, Africa and America.—On the base of field observations three main types of floral development inAnnonaceae are proposed, the most elaborated one found in the fly pollinated genusPseuduvaria. The growth form change from shrubs to lianas during the ontogeny ofDesmos andMelodorum, the vegetative propagation of anAncana species and the ecological and evolutionary patterns of the taxa investigated are discussed.  相似文献   

16.
Cold-induced mitotic under-condensation of certain chromosome segments is a rare phenomenon in plants. There are about 11 genera of monocotyledons and only 3 of dicotyledons, where species are known to have such cold-sensitive regions (CSRs). The molecular causes of cold-induced undercondensation are not clear, and no consistent cytochemical characteristics of CSRs are known. Recently we have presented a chromosome banding analysis on CSRs and their relation to constitutive heterochromatin inCestrum parqui (Solanaceae), a species of sect.Cestrum. The present study is concerned with a similar analysis inC. strigillatum of sect.Cestrum, and inC. fasciculatum andC. elegans of sect.Habrothamnus. Chromomycin/DAPI fluorescent double staining, sequential C-banding, and sequential silver impregnation were applied. The species differ in detail but are similar qualitatively. Four classes of heterochromatin can be discriminated. (1) CSRs, with banding properties indicating AT-rich constitutive heterochromatin. After cold-treatment CSR heterochromatin can be silver-impregnated from interphase, as chromocentres, to metaphase, as undercondensed segments. CSRs are subject to frequent heteromorphy. (2) Nucleolar organizers. Two pairs were identified in the karyotypes. Banding properties indicate GC-rich heterochromatin. The nucleolar organizing regions are less evident and their silver-reducing capability reduces during metaphase. (3) Non-nucleolar CMA-positively fluorescing bands. These are minute, polymorphic, positively C-stained, and restricted to one or a few sites in the karyotypes. (4) Indifferently fluorescing, positively C-stained bands. They occur on centromeres, some chromosome ends, and clustered over the chromosome arms. They are mostly very delicate and do not resist harsh banding treatments. — The species investigated here andC. parqui resemble each other qualitatively in heterochromatin classes (1), (2), and (3), but differ much in banding properties of class (4). Therefore, heterochromatin characteristics in the genus are not so uniform as the present results inC. strigillatum, C. fasciculatum, andC. elegans appear to show.  相似文献   

17.
This work examines the cytogeographical distribution, the morphological characters, and the karyotypes of threeCrepis species endemic to Greece (C. sibthorpiana, C. incana, andC. heldreichiana). C. sibthorpiana is diploid (2n = 2x = 8),C. incana is diploid (2n = 2x = 8) and tetraploid (2n = 4x = 16, 17), andC. heldreichiana is always dekaploid (2n = 10x = 40). The Giemsa positive bands, usually pairs of dots, are mainly centromeric inC. incana, while they are terminal inC. sibthorpiana (on the short arm of all chromosomes) and inC. heldreichiana (on both arms of all chromosomes). Intercalary C-bands are scarce and usually variable within karyotypes, individuals, and species. The most variable karyotype both in Feulgen and Giemsa preparations is that ofC. incana, in which also supernumerary chromosomes were observed, which are polysomic to standard set members. On the basis of morphological and karyological data the evolutionary relationships among the threeCrepis taxa are discussed.  相似文献   

18.
Prospero is a Mediterranean autumn-flowering genus ofHyacinthaceae commonly classified inScilla asS. autumnalis andS. obtusifolia. Extensive dysploid and polyploid variation has been reported. In the present study 77 diploid accessions from the western to the eastern part of the area of distribution, the major part being from continental Greece and Crete, have been analysed for karyotype structure and, in part, for genome size. Methods employed were acetocarmine staining, Giemsa C-banding, fluorochrome staining mainly with chromomycin A3/DAPI, silver impregnation, and Feulgen densitometry. Banded idiograms were established with a computer assisted karyotype analysis procedure. Chromosome numbers were 2n = 8 inP. obtusifolium, and 2n = 12 and 14 inP. autumnale s. l. Dispensable euchromatic chromosome segments and different types of B chromosomes occurred. Among the cytotypes with 2n = 14 two karyotypes from Turkey differed from each other and from the rest in form, position of the nucleolar constriction, and in genome size. The remaining accessions were similar in karyotype shape but three levels of genome size could be discerned, the highest (1C = 7.50 pg) being found on the Iberian Peninsula, an intermediate one on Corsica and Malta, and the lowest (4.27 pg) in the Aegean. The karyotype with 2n = 12 had an intermediate genome size, and that ofP. obtusifolium a relatively low one. Heterochromatin amount was generally low, but some karyotypes showed characteristic banding patterns. The relationship between the chromosome complements with 2n = 14, 12 and 8 is discussed on the basis of idiograms and DNA amounts.The authors respectfully dedicate this papers to emer. o. Prof. Dr.Elisabeth Tschermak-Woess on the occasion of her 80th birthday.  相似文献   

19.
Karyotypes, constitutive heterochromatin and nucleolar numbers of five recognized taxa and two systematically new populations ofGuizotia have been studied using Giemsa or aceto-orcein staining, C-banding and silver nitrate staining. All accessions have 2n = 30 chromosomes, but satellite chromosome number and nucleolar number varied from four to eight. Centromere positions varied from predominantly median to submedian and subterminal in different materials. The satellites and an interstitial region in the short arm of one chromosome pair were C-banded in all materials. Telomeric and centromeric C-bands were also observed. The material could be classified into three groups, indicating possible phylogenetic relationships.  相似文献   

20.
Fourteen species ofAsarum s. str.,Asiasarum andHeterotropa were studied cytotaxonomically. Their karyotypes and C-banding patterns were examined in detail. The results obtained were different in some important respects from previous reports related to the chromosomes of these plants, and were partially disharmonious with the assumptions presented for the relationships among these genera by some previous workers. Furthermore, it was confirmed thatAsarum s. str. (2n=26) (excludingAsarum leptophyllum),Asiasarum (2n=26),Heterotropa (2n=24) andAsarum leptophyllum (2n=24) are distinct from one another in the karyotype and the C-banding pattern of a few pairs of the small chromosomes in each set. The significance of these small chromosomes in considering the relationships among the plants concerned is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号