首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of PDE4 inhibitors, while simultaneously minimizing PDE4 activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like mode in contrast to the cAMP-like binding mode found in PDE4. Structure activity relationship studies coupled with an inhibitor bound crystal structure in the active site of the catalytic domain of PDE2 identified structural features required to minimize PDE4 inhibition while simultaneously maximizing PDE2 inhibition.  相似文献   

2.
The next generation of PDE4 inhibitors   总被引:6,自引:0,他引:6  
A number of highly potent PDE4 inhibitors are being developed for the treatment of asthma, chronic obstructive pulmonary disease, rheumatoid arthritis, multiple sclerosis and Crohn's disease. Cilomilast (Ariflo, SB 207499, SmithKline Beecham), the most advanced member of the class in Phase III clinical trials, was reported to have a limited therapeutic window. Other inhibitors with improved profiles in preclinical models are entering into (or are in) clinical trials. The recent developments in understanding PDE4 catalysis, inhibitor binding and their emetic response should facilitate the design of the next generation of PDE4 inhibitors.  相似文献   

3.
A series of 2,3-disubstituted pyridines were synthesized as potential non-emetic PDE4 inhibitors. To decrease brain exposure and minimize emesis, we modified the lipophilic moiety of a series of emetic PDE4 inhibitors and found that introduction of a hydroxy group into the pyridine moiety of the side chain led to non-emetic compounds with preserved PDE4 inhibitory activity. Following optimization at the phenoxy group, we identified compound 1 as a potent non-emetic PDE4 inhibitor. Compound 1 showed significant efficacy in an animal model of asthma without inducing emesis.  相似文献   

4.
The type 4 cAMP-specific phosphodiesterases (PDE4s) are Mg(2+)-dependent hydrolases that catalyze the hydrolysis of 3', 5'-cAMP to AMP. Previous studies indicate that PDE4 exists in two conformations that bind the inhibitor rolipram with affinities differing by more than 100-fold. Here we report that these two conformations are the consequence of PDE4 binding to its metal cofactor such as Mg(2+). Using a fluorescence resonance energy transfer (FRET)-based equilibrium binding assay, we identified that L-791,760, a fluorescent inhibitor, binds to the apoenzyme (free enzyme) and the holoenzyme (enzyme bound to Mg(2+)) with comparable affinities (K(d) approximately 30 nM). By measuring the displacement of the bound L-791,760, we have also identified that other inhibitors bind differentially with the apoenzyme and the holoenzyme depending upon their structure. CDP-840, SB-207499, and RP-73401 bind preferentially to the holoenzyme. The conformational-sensitive inhibitor (R)-rolipram binds to the holoenzyme and apoenzyme with affinities (K(d)) of 5 and 300 nM, respectively. In contrast to its high affinity (K(d) approximately 2 microM) and active holoenzyme complex, cAMP binds to the apoenzyme nonproductively with a reduced affinity (K(d) approximately 170 microM). These results demonstrate that cofactor binding to PDE4 is responsible for eliciting its high-affinity interaction with cAMP and the activation of catalysis.  相似文献   

5.
A cell-based high-throughput screen (HTS) was developed to detect phosphodiesterase 8 (PDE8) and PDE4/8 combination inhibitors. By replacing the Schizosaccharomyces pombe PDE gene with the murine PDE8A1 gene in strains lacking adenylyl cyclase, we generated strains whose protein kinase A (PKA)-stimulated growth in 5-fluoro orotic acid (5FOA) medium reflects PDE8 activity. From our previously-identified PDE4 and PDE7 inhibitors, we identified a PDE4/8 inhibitor that allowed us to optimize screening conditions. Of 222,711 compounds screened, ∼0.2% displayed composite Z scores of >20. Additional yeast-based assays using the most effective 367 compounds identified 30 candidates for further characterization. Among these, compound BC8-15 displayed the lowest IC50 value for both PDE4 and PDE8 inhibition in in vitro enzyme assays. This compound also displays significant activity against PDE10A and PDE11A. BC8-15 elevates steroidogenesis in mouse Leydig cells as a single pharmacological agent. Assays using BC8-15 and two structural derivatives support a model in which PDE8 is a primary regulator of testosterone production by Leydig cells, with an additional role for PDE4 in this process. BC8-15, BC8-15A, and BC8-15C, which are commercially available compounds, display distinct patterns of activity against PDE4, PDE8, PDE10A, and PDE11A, representing a chemical toolkit that could be used to examine the biological roles of these enzymes in cell culture systems.  相似文献   

6.
In this study the first PDE4B selective inhibitor is described. Optimization of lead 2-arylpyrimidine derivatives afforded a series of potent PDE4B inhibitors with >100-fold selectivity over the PDE4D isozyme. With a good pharmacokinetic profile, a selected compound exhibited potent anti-inflammatory effects in vivo and showed less emesis compared with Cilomilast.  相似文献   

7.
The optimization of oxazole-based PDE4 inhibitor 1 has led to the identification of both oral (compound 16) and inhaled (compound 34) PDE4 inhibitors. Selectivity against PDE10/PDE11, off target screening, and in vivo activity in the rat are discussed.  相似文献   

8.
In this study we report a series of triazine derivatives that are potent inhibitors of PDE4B. We also provide a series of structure activity relationships that demonstrate the triazine core can be used to generate subtype selective inhibitors of PDE4B versus PDE4D. A high resolution co-crystal structure shows that the inhibitors interact with a C-terminal regulatory helix (CR3) locking the enzyme in an inactive ‘closed’ conformation. The results show that the compounds interact with both catalytic domain and CR3 residues. This provides the first structure-based approach to engineer PDE4B-selective inhibitors.  相似文献   

9.
Selective inhibitors against the 11 families of cyclic nucleotide phosphodiesterases (PDEs) are used to treat various human diseases. How the inhibitors selectively bind the conserved PDE catalytic domains is unknown. The crystal structures of the PDE4D2 catalytic domain in complex with (R)- or (R,S)-rolipram suggest that inhibitor selectivity is determined by the chemical nature of amino acids and subtle conformational changes of the binding pockets. The conformational states of Gln369 in PDE4D2 may play a key role in inhibitor recognition. The corresponding Y329S mutation in PDE7 may lead to loss of the hydrogen bonds between rolipram and Gln369 and is thus a possible reason explaining PDE7's insensitivity to rolipram inhibition. Docking of the PDE5 inhibitor sildenafil into the PDE4 catalytic pocket further helps understand inhibitor selectivity.  相似文献   

10.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

11.
12.
Phosphodiesterase (PDE) constitutes a superfamily of enzymes that catalyze the hydrolysis of cAMP and cGMP into their corresponding monophosphates and play an important role in diverse physiological functions. The present study provides a process for identifying PDE4 subtypes selective inhibitors using a reporter gene assay. Stable recombinant HEK-293 cell lines expressing high levels of PDE4A4B, PDE4B2A, and PDE4D3 subtypes individually were generated. Transient transfection of pCRE-Luc plasmid, harboring luciferase reporter gene under the control of cAMP response element (CRE)-binding sequence, into these stable recombinant cell lines followed by treatment with PDE4 inhibitor, resulted in a dose dependent increase in luciferase activity. This methods provide a novel, simple and sensitive assay for high throughput screening of PDE4 subtype selective inhibitors for treatment of asthma and COPD.  相似文献   

13.
An expansion of structure–activity studies on a series of substituted 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine PDE4 inhibitors and the introduction of a related [1,2,4]triazolo[4,3-b]pyridazine based inhibitor of PDE4 is presented. The development of SAR included strategic incorporation of known substituents on the critical catachol diether moiety of the 6-phenyl appendage on each heterocyclic core. From these studies, (R)-3-(2,5-dimethoxyphenyl)-6-(4-methoxy-3-(tetrahydrofuran-3-yloxy)phenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (10) and (R)-3-(2,5-dimethoxyphenyl)-6-(4-methoxy-3-(tetrahydrofuran-3-yloxy)phenyl)-[1,2,4]triazolo[4,3-b]pyridazine (18) were identified as highly potent PDE4A inhibitors. Each of these analogues was submitted across a panel of 21 PDE family members and was shown to be highly selective for PDE4 isoforms (PDE4A, PDE4B, PDE4C, PDE4D). Both 10 and 18 were then evaluated in divergent cell-based assays to assess their relevant use as probes of PDE4 activity. Finally, docking studies with selective ligands (including 10 and 18) were undertaken to better understand this chemotypes ability to bind and inhibit PDE4 selectively.  相似文献   

14.
A PDE4B subtype selective inhibitor is expected to have a wider therapeutic window than non-selective PDE4 inhibitors. In this Letter, two series of 7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine derivatives and 5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine derivatives were evaluated for their PDE4B subtype selectivity using human PDE4B2 and PDE4D2 full length enzymes. To improve their PDE4B selectivity over PDE4D, we optimized the substituents on the pyrimidine ring and the side chain phenyl ring, resulting in several derivatives with more than 100-fold selectivity for PDE4B. Consequently, we identified 2-(3-chloro-4-methoxy-phenyl)-5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine derivative 54 as a highly selective PDE4B inhibitor, which had potent hPDE4B inhibitory activity with an IC50 value of 3.0 nM and 433-fold PDE4B selectivity over PDE4D.  相似文献   

15.
Expanding on HTS hit 4 afforded a series of [1,3,5]triazine derivatives as novel PDE4 inhibitors. The SAR development and optimization process with the emphasis on ligand efficiency and physicochemical properties led to the discovery of compound 44 as a potent, selective and orally active PDE4 inhibitor.  相似文献   

16.
Phosphodiesterases (PDEs) are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstructive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP)-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.  相似文献   

17.
Type 4 phosphodiesterases (PDE4) are critical regulators in TCR signaling by attenuating the negative constraint of cAMP. In this study, we show that anti-CD3/CD28 stimulation of human primary CD4(+) T cells increases the expression of the PDE4 subtypes PDE4A, PDE4B, and PDE4D in a specific and time-dependent manner. PDE4A and PDE4D mRNAs as well as enzyme activities were up-regulated within 5 days, PDE4B showed a transient up-regulation with highest levels after 24 h. The induction was shown to be independent of different stimulation conditions and was similar in naive and memory T cell subpopulations. To elucidate the functional impact of individual PDE4 subtypes on T cell function, we used PDE4 subtype-specific short-interfering RNAs (siRNAs). Knockdown of either PDE4B or PDE4D inhibited IL-2 release 24 h after stimulation (time point of maximal IL-2 concentrations) to an extent similar to that observed with the panPDE4 inhibitor RP73401 (piclamilast). Substantial amounts of IFN-gamma or IL-5 were measured only at later time points. siRNA targeting PDE4D showed a predominant inhibitory effect on these cytokines measured after 72 h. However, the inhibition of all cytokines was most effective when PDE4 siRNAs were applied in combination. Although the effect of PDE4 inhibition on T cell proliferation is small, the PDE4D-targeting siRNA alone was as effective as the panPDE4 inhibitor, whereas PDE4A or PDE4B siRNAs had hardly an effect. In summary, individual PDE4 subtypes have overall nonredundant, but complementary, time-dependent roles in propagating various T cell functions and PDE4D is the form likely playing a predominant role.  相似文献   

18.
(-)-6-(7-Methoxy-2-trifluoromethylpyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone (KCA-1490) is a dual PDE3/4 inhibitor that exhibits potent combined bronchodilatory and anti-inflammatory activity. Here we show that a 4,4-dimethylpyrazolone subunit serves as an effective surrogate for the 5-methyl-4,5-dihydropyridazin-3(2H)-one ring of KCA-1490 whilst lacking a stereogenic centre. The 2- and 7-substituents in the pyrazolo[1,5-a]pyridine subunit markedly influence the PDE-inhibitory profile and can be adjusted to afford either potent PDE4-selective inhibitors or dual PDE3/4 inhibitors. A survey of bicyclic heteroaromatic replacements for the pyrazolo[1,5-a]pyridine allowed further refinement of the inhibitory profile and identified 3-(8-methoxy-2-(trifluoromethyl)imidazo[1,2-a]pyridin-5-yl)-4,4-dimethyl-1H-pyrazol-5(4H)-one as an orally active, achiral KCA-1490 analog with well-balanced dual PDE3/4-inhibitory activity.  相似文献   

19.
Substituted pyridazino[4,5-b]indolizines were identified as potent and selective PDE4B inhibitors. We describe the structure–activity relationships generated around an HTS hit that led to a series of compounds with low nanomolar affinity for PDE4B and high selectivity over the PDE4D subtype.  相似文献   

20.
We have isolated cDNAs encoding PDE4A8 (phosphodiesterase 4 isoform A8), a new human cAMP-specific PDE4 isoform encoded by the PDE4A gene. PDE4A8 has a novel N-terminal region of 85 amino acids that differs from those of the related 'long' PDE4A4, PDE4A10 and PDE4A11 isoforms. The human PDE4A8 N-terminal region has diverged substantially from the corresponding isoforms in the rat and other mammals, consistent with rapid evolutionary change in this region of the protein. When expressed in COS-7 cells, PDE4A8 localized predominantly in the cytosol, but approx. 20% of the enzyme was associated with membrane fractions. Cytosolic PDE4A8 was exquisitely sensitive to inhibition by the prototypical PDE4 inhibitor rolipram (IC(50) of 11+/-1 nM compared with 1600 nM for PDE4A4), but was less sensitive to inhibition by cilomilast (IC(50) of 101+/-7 nM compared with 61 nM for PDE4A4). PDE4A8 mRNA was found to be expressed predominantly in skeletal muscle and brain, a pattern that differs from the tissue expression of other human PDE4 isoforms and also from that of rat PDE4A8. Immunohistochemical analysis showed that PDE4A8 could be detected in discrete regions of human brain, including the cerebellum, spinal cord and cerebral cortex. The unique tissue distribution of PDE4A8, combined with the evolutionary divergence of its N-terminus, suggest that this isoform may have a specific function in regulating cAMP levels in human skeletal muscle and brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号