共查询到20条相似文献,搜索用时 15 毫秒
1.
RCAN1, also known as DSCR1, is an endogenous regulator of calcineurin, a serine/threonine protein phosphatase that plays a critical role in many physiological processes. In this report, we demonstrate that p38?? MAP kinase can phosphorylate RCAN1 at multiple sites in vitro and show that phospho-RCAN1 is a good protein substrate for calcineurin. In addition, we found that unphosphorylated RCAN1 noncompetitively inhibits calcineurin protein phosphatase activity and that the phosphorylation of RCAN1 by p38?? MAP kinase decreases the binding affinity of RCAN1 for calcineurin. These findings reveal the molecular mechanism by which p38?? MAP kinase regulates the function of RCAN1/calcineurin through phosphorylation. 相似文献
2.
It was previously reported that β-catenin contributes to the tumorigenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL), and the oncogenic effects of β-catenin in these tumors are promoted by NPM-ALK, an abnormal fusion protein characteristic of ALK+ALCL. In this study, we hypothesized that NPM-ALK promotes the oncogenic activity of β-catenin via its functional interactions with the Wnt canonical pathway (WCP). To test this hypothesis, we examined if NPM-ALK modulates the gene expression of various members in the WCP. Using a Wnt pathway-specific oligonucleotide array and Western blots, we found that the expression of casein kinase 2α (CK2α) was substantially downregulated in ALK+ALCL cells in response to siRNA knockdown of NPM-ALK. CK2α is biologically important in ALK+ALCL, as its inhibition using 4,5,6,7-tetrabromobenzotriazole or siRNA resulted in a significant decrease in cell growth and a substantial decrease in the β-catenin protein level. Furthermore, CK2α co-immunoprecipitated with NPM-ALK and regulated its level of serine phosphorylation, a feature previously shown to correlate with the oncogenic potential of this fusion protein. To conclude, this study has revealed a novel crosstalk between NPM-ALK and CK2α, and our data supports the model that these two molecules work synergistically to promote the tumorigenicity of these lymphomas. 相似文献
3.
González-Arenas A Hansberg-Pastor V Hernández-Hernández OT González-García TK Henderson-Villalpando J Lemus-Hernández D Cruz-Barrios A Rivas-Suárez M Camacho-Arroyo I 《Biochimica et biophysica acta》2012,1823(2):379-386
Estradiol (E2) regulates several cellular functions through the interaction with estrogen receptor subtypes, ERα and ERβ, which present different functional and regulation properties. ER subtypes have been identified in human astrocytomas, the most common and aggressive primary brain tumors. We studied the role of ER subtypes in cell growth of two human astrocytoma cell lines derived from tumors of different evolution grades: U373 and D54 (grades III and IV, respectively). E2 significantly increased the number of cells in both lines and the co-administration with an ER antagonist (ICI 182, 780) significantly blocked E2 effects. ERα was the predominant subtype in both cell lines. E2 and ICI 182, 780 down-regulated ERα expression. The number of U373 and D54 cells significantly increased after PPT (ERα agonist) treatment but not after DPN (ERβ agonist) one. To determine the role of SRC-1 and SRC-3 coactivators in ERα induced cell growth, we silenced them with RNA interference. Coactivator silencing blocked the increase in cell number induced by PPT. The content of proteins involved in proliferation and metastasis was also determined after PPT treatment. Western blot analysis showed that in U373 cells the content of PR isoforms (PR-A and PR-B), EGFR, VEGF and cyclin D1 increased after PPT treatment while in D54 cells only the content of EGFR was increased. Our results demonstrate that E2 induces cell growth of human astrocytoma cell lines through ERα and its interaction with SRC-1 and SRC-3 and also suggest differential roles of ERα on cell growth depending on astrocytoma grade. 相似文献
4.
《Cell cycle (Georgetown, Tex.)》2013,12(3):588-595
Tyrosyl DNA phosphodiesterase (TDP1) is a DNA 3'-end processing enzyme that preferentially hydrolyses the bond between the 3'-end of DNA and stalled DNA topoisomerase 1. The importance of TDP1 is highlighted by its association with the human genetic disease spinocerebellar ataxia with axonal neuropathy (SCAN1). TDP1 comprises of a highly conserved C-terminus phosphodiesterase domain and a less conserved N-terminus tail. The importance of the N-terminus domain was suggested by its interaction with Lig3α. Here we show that this interaction is promoted by serine 81 that is located within a putative S/TQ site in the N-terminus domain of TDP1. Although mutation of serine 81 to alanine had no impact on TDP1 activity in vitro and had little impact on the ability of TDP1 to mediate the rapid repair of CPT- or IR-induced DNA breaks in vivo, it led to marked reduction of protein stability. Moreover, it reduced the ability of TDP1 to promote cell survival following genotoxic stress. Together, our findings identify a novel mechanism for regulating TDP1 function in mammalian cells that is not directly related to its enzymatic activity. 相似文献
5.
Valentina Millarte Gaelle Boncompain Kerstin Tillmann Franck Perez Elizabeth Sztul Hesso Farhan 《Molecular biology of the cell》2015,26(12):2263-2278
The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed—fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration. 相似文献
6.
Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling. 相似文献
7.
Anthony O. Beas Vanessa Taupin Carmen Teodorof Lien T. Nguyen Mikel Garcia-Marcos Marilyn G. Farquhar 《Molecular biology of the cell》2012,23(23):4623-4634
The organization of the endocytic system into biochemically distinct subcompartments allows for spatial and temporal control of the strength and duration of signaling. Recent work has established that Akt cell survival signaling via the epidermal growth factor receptor (EGFR) occurs from APPL early endosomes that mature into early EEA1 endosomes. Less is known about receptor signaling from EEA1 endosomes. We show here that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by the heterotrimeric G protein Gαs through interaction with the signal transducing protein GIV (also known as Girdin). When Gαs or GIV is depleted, activated EGFR and its adaptors accumulate in EEA1 endosomes, and EGFR signaling is prolonged, EGFR down-regulation is delayed, and cell proliferation is greatly enhanced. Our findings define EEA1 endosomes as major sites for proliferative signaling and establish that Gαs and GIV regulate EEA1 but not APPL endosome maturation and determine the duration and strength of proliferative signaling from this compartment. 相似文献
8.
9.
Feng Liang Shuqin Zhang Bing Wang Jianwu Qiu Yunjie Wang 《Journal of molecular histology》2014,45(2):141-151
Integrin-linked kinase (ILK) is a ubiquitously expressed serine/threonine protein kinase that has been implicated in cancer development, progression and metastasis. The aim of the present study was to characterize the role of ILK in glioma cell invasion and migration. We generated a recombinant eukaryotic expression vector containing the human ILK gene and transfected it into human glioma SHG-44 cells. Real-time PCR and western blot analysis were used to identify the stable transformants. The wound healing and Transwell invasion assays showed that ectopic overexpression of ILK in SHG-44 cells significantly promoted their migration and invasion capabilities in culture. This was accompanied by a decrease in expression of E-cadherin and an increase in expression of Snail and Slug. Moreover, the decrease in E-cadherin expression induced by ILK overexpression was greatly restored by the nuclear factor-κB (NF-κB) inhibitor BAY 11-7028 or small interfering RNA targeting NF-κB p65, indicating an involvement of NF-κB in ILK-induced down-regulation of E-cadherin. In conclusion, our data underscore a novel role for ILK in glioma invasion and metastasis processes, implicating potential for therapeutic interference. 相似文献
10.
《Biochemical and biophysical research communications》2020,521(2):395-401
Recently, several studies have evaluated the role of circular RNAs in the metastasis and development of multiple cancers. In our earlier microarray-based study, we had reported the aberrant expression of a novel circular RNA, hsa-circ-0000211 in lung adenocarcinoma (LAC) tissues. However, the roles of hsa-circ-0000211 in LAC have not been studied. Here hsa-circ-0000211 expression in the LAC tissues and cell lines was determined by quantitative real-time PCR (qRT-PCR). The function of hsa-circ-0000211 was evaluated by transwell assay and wound healing. Mechanisms of hsa-circ-0000211 was measured by luciferase reporter assay and western blot. Results revealed the expression of hsa-circ-0000211 in the human LAC tissues and LAC cell lines was higher than that in normal tissue and human lung normal epithelial cells, respectively. The knockdown of hsa-circ-0000211 could inhibit the migration and invasion properties of LAC. Furthermore, hsa-circ-0000211 promoted the migration and invasion of LAC by sponging miR-622. Moreover, hsa-circ-0000211 upregulated the HIF1-α expression by targeting miR-622. hsa-circ-0000211 promoted LAC cell migration and invasion by modulating the miR-622/HIF1-α network. Our study demonstrated that hsa-circ-0000211 can be a potential novel therapeutic target for LAC. 相似文献
11.
Haines RJ Corbin KD Pendleton LC Eichler DC 《The Journal of biological chemistry》2012,287(31):26168-26176
12.
Dixian Luo Yiwen Bu Jun Ma Sandeep Rajput Yingchun He Guangxian Cai Duan-Fang Liao Deliang Cao 《The Journal of biological chemistry》2013,288(51):36733-36740
Aldo-keto reductase 1B10 (AKR1B10) protein is a new tumor biomarker in humans. Our previous studies have shown that AKR1B10 is secreted through a lysosome-mediated nonclassical pathway, leading to an increase in the serum of breast cancer patients. This study illuminates the regulatory mechanism of AKR1B10 secretion. The cytosolic AKR1B10 associates with and is translocated to lysosomes by heat shock protein 90α (HSP90α), a chaperone molecule. Ectopic expression of HSP90α significantly increased the secretion of endogenous AKR1B10 and exogenous GFP-AKR1B10 fusion protein when cotransfected. Geldanamycin, a HSP90α inhibitor, dissociated AKR1B10-HSP90α complexes and significantly reduced AKR1B10 secretion in a dose-dependent manner. We characterized the functional domain in AKR1B10 and found that helix 10 (amino acids 233–240), located at the C terminus, regulates AKR1B10 secretion. Targeted point mutations recognized that amino acids Lys-233, Glu-236, and Lys-240 in helix 10 mediate the interaction of AKR1B10 with HSP90α. Together, our data suggest that HSP90α mediates AKR1B10 secretion through binding to its helix 10 domain. This finding is significant in exploiting the use of AKR1B10 in cancer clinics. 相似文献
13.
Nie J Sun C Faruque O Ye G Li J Liang Q Chang Z Yang W Han X Shi Y 《The Journal of biological chemistry》2012,287(31):26435-26444
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. 相似文献
14.
15.
Naci D El Azreq MA Chetoui N Lauden L Sigaux F Charron D Al-Daccak R Aoudjit F 《The Journal of biological chemistry》2012,287(21):17065-17076
The role and the mechanisms by which β1 integrins regulate the survival and chemoresistance of T cell acute lymphoblastic leukemia (T-ALL) still are poorly addressed. In this study, we demonstrate in T-ALL cell lines and primary blasts, that engagement of α2β1 integrin with its ligand collagen I (ColI), reduces doxorubicin-induced apoptosis, whereas fibronectin (Fn) had no effect. ColI but not Fn inhibited doxorubicin-induced mitochondrial depolarization, cytochrome c release, and activation of caspase-9 and -3. ColI but not Fn also prevented doxorubicin from down-regulating the levels of the prosurvival Bcl-2 protein family member Mcl-1. The effect of ColI on Mcl-1 occurred through the inhibition of doxorubicin-induced activation of c-Jun N-terminal kinase (JNK). Mcl-1 knockdown experiments showed that the maintenance of Mcl-1 levels is essential for ColI-mediated T-ALL cell survival. Furthermore, activation of MAPK/ERK, but not PI3K/AKT, is required for ColI-mediated inhibition of doxorubicin-induced JNK activation and apoptosis and for ColI-mediated maintenance of Mcl-1 levels. Thus, our study identifies α2β1 integrin as an important survival pathway in drug-induced apoptosis of T-ALL cells and suggests that its activation can contribute to the generation of drug resistance. 相似文献
16.
Linjie Wang Yan Wang Tao Zhong Li Li Hongping Zhang Yuanzhu Xiong 《Molecular and cellular biochemistry》2013,377(1-2):65-73
GSK-3 plays an important role on numerous cellular processes involved in the regulation of embryonic development, protein synthesis, glycogen metabolism, inflammatory, mitosis and apoptosis. In this study, we obtained the cDNA and promoter sequences of the porcine GSK-3α gene, analyzed its genomic organization and mapped it to SSC6q12 through comparative mapping method. Moreover, the qRT-PCR analysis revealed that porcine GSK-3α gene was widely expressed in many tissues, and a high expression level was observed in the brain and spleen. In addition, seven single-nucleotide polymorphisms were detected in the promoter region of porcine GSK-3α gene. Association analysis revealed that the GSK-3α Hin1I and MspI polymorphisms both had significant associations (p < 0.05) with loin muscle area, average backfat thickness, thorax–waist fat thickness, and buttock fat thickness. These results provide useful information for further investigation on the function of porcine GSK-3α gene. 相似文献
17.
E. Irene Newhouse James S. Newhouse Maqsudul Alam 《Journal of molecular modeling》2013,19(6):2265-2271
Hell’s gate globin I (HGbI), a heme-containing protein from the extremophile Methylacidiphilum infernorum, has fast oxygen-binding/slow release characteristics due to its distal residues Gln and Tyr. The combination of Gln/Tyr distal iron coordination, adaptation to extreme environmental conditions, and lack of a D helix suggests that ligand migration in HGbI differs from other previously studied globins. Locally enhanced molecular dynamics trajectories of oxygen migration indicate a large internal cavity. This may increase the tendency of oxygen to exit from portals other than the most direct exit from the space near the heme. Oxygen may reside transiently in shallow surface depressions around the exits. Such surface trapping may enhance both oxygen uptake by increasing contact time between molecules, and decrease release by increasing the probability of oxygen reentry from the vicinity of the portal. Figure
Trajectory of O2 through Hell’s Gate Globin I with exit into solvent. Van der Waals surface transparent gray, backbone green, heme as spheres colored by element, O2 as ball & stick, colored by time step, from red through white to blue 相似文献
18.
Members of Bcl-2 family of proteins are regulators of cell death that can be grouped into subfamilies of prosurvival and proapoptotic molecules. They are characterized by the presence of several conserved motifs, known as the Bcl-2 homology (BH) domains, designated BH1, BH2, BH3 and BH4. Mutagenesis and structural studies revealed that the BH domains are important functional domains that are also required for dimerization function. Recently, a subfamily of proapoptotic molecules only contains BH3 motif has been identified suggesting BH3 domain alone may be sufficient for mediating proapoptotic function among 相似文献
19.
Cell migration is the hallmark of cancer regulating anchorage independent growth and invasiveness of tumor cells. Hyaluronan (HA), an ECM polysaccharide is shown to regulate this process. In the present report, we demonstrated, supplementation of purified recombinant hyaluronan binding protein 1(HABP1/p32/gC1qR) from human fibroblast cDNA enhanced migration potential of highly invasive melanoma (B16F10) cells. Exogenous HABP1 adhered to the cell surface transiently and was shown to interact and colocalize with αvβ3 integrin, a regulatory molecule of cell migration. In HABP1 treated cells, the phosphorylation of nuclear factor inducing kinase (NIK) and IκBα was observed, followed by nuclear translocation of p65 subunit of NFκB, along with its DNA-binding and transactivation, resulting in upregulation of MT1-MMP expression and finally MMP-2 activation. To substantiate our findings, prior to HABP1 treatment, the expression of NIK was reduced by small interfering RNA mediated knockdown and confirmed the inhibition of nuclear translocation of p65 subunit of NFκB and upregulation of MT1-MMP expression. In addition, the use of curcumin, an anti-cancer drug, or GRGDSP, the blocking peptide along with exogenous HABP1, inhibited such NFκB-dependent pathway, confirming that HABP1-induced cell migration is αvβ3 integrin-mediated and downstream signaling by NFκB. Finally, we translated the in vitro data in mice model and observed enhanced tumor growth with higher MT1-MMP expression and MMP-2 activation in the tumors upon injection of HABP1 treated melanoma cells. The treatment of curcumin, the anticancer drug along with HABP1, inhibited the migration, expression of MT1-MMP and activation of MMP-2 and finally tumor growth supports the involvement of HABP1 in tumor formation. 相似文献
20.
《Bioorganic & medicinal chemistry letters》2020,30(18):127412
The discovery and optimisation of a novel series of potent and selective p38α inhibitors is described. Evaluating the structure-activity relationship of an aminoalkyl substituent at the 3 position of the 2(1H)-pyrazinone core, p38α potency was increased 20000-fold. The most advanced compound (25) demonstrated excellent in vivo properties suitable for an inhaled route of administration. 相似文献