首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Japanese bacillus Calmette-Guerin (BCG) vaccine preparation contains two types of variant strains, Type I, which has a 22-base-pair deletion in the RD16 region, and Type II, which has an identical sequence to those of other BCG strains. In this study, we established a method to quantify the percentage of variant strain Type II contained in freeze-dried BCG product with real-time PCR. With this method we examined the master seed lot Tokyo 172, two secondary seed lots, Tokyo 172-1 and Tokyo 172-2, which were produced from Tokyo 172, and four commercial lots produced form Tokyo 172-1. Tokyo 172, Tokyo 172-1, and Tokyo 172-2 contained 55.1%, 19.5%, and 3.6% of Type II variant strain, respectively. Commercial lots contained 1.5%, 4.5%, 7.4%, and 4.3% of Type II variant strain, respectively. These results indicated that the two variant strains contained in the master seed lot continued to coexist in subsequently produced lots with a decrease in population of variant strain Type II. This method would be useful for quality control of commercial Japanese BCG vaccine preparations.  相似文献   

2.
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) are structurally related lipids noncovalently bound to the outer cell wall layer of Mycobacterium tuberculosis, Mycobacterium leprae, and several opportunistic mycobacterial human pathogens. PDIMs and PGLs are important effectors of virulence. Elucidation of the biosynthesis of these complex lipids will not only expand our understanding of mycobacterial cell wall biosynthesis, but it may also illuminate potential routes to novel therapeutics against mycobacterial infections. We report the construction of an in-frame deletion mutant of tesA (encoding a type II thioesterase) in the opportunistic human pathogen Mycobacterium marinum and the characterization of this mutant and its corresponding complemented strain control in terms of PDIM and PGL production. The growth and antibiotic susceptibility of these strains were also probed and compared with the parental wild-type strain. We show that deletion of tesA leads to a mutant that produces only traces of PDIMs and PGLs, has a slight growth yield increase and displays a substantial hypersusceptibility to several antibiotics. We also provide a robust model for the three-dimensional structure of M. marinum TesA (TesAmm) and demonstrate that a Ser-to-Ala substitution in the predicted catalytic Ser of TesAmm renders a mutant that recapitulates the phenotype of the tesA deletion mutant. Overall, our studies demonstrate a critical role for tesA in mycobacterial biology, advance our understanding of the biosynthesis of an important group of polyketide synthase-derived mycobacterial lipids, and suggest that drugs aimed at blocking PDIM and/or PGL production might synergize with antibiotic therapy in the control of mycobacterial infections.  相似文献   

3.
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.  相似文献   

4.
Exposure of cells to type I interferon (IFN) induces an antiviral state that prevents viral infection, but viruses can utilize multiple tactics to antagonize the host immune system. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two major pathogens that cause hand, foot, and mouth disease (HFMD), which is prevalent among children. We found that both EV71 and CA16 have different reactions to type I IFN pretreatment and induction patterns of type I IFN on Rhabdomyosarcoma (RD) cells. Further, a human-α and β IFN PCR array was employed to analyze the expressions of 84 genes related to the type I IFN pathway. We found significant up-regulation of multiple genes in the presence of type I IFN and differential regulation patterns during EV71 or CA16 infection in RD cells. For instance, EV71 infection repressed the JAK-STAT signaling pathway and interferon-stimulated gene (ISG) expression, whereas CA16 infection normally triggers the JAK-STAT pathway, leading to the expression of ISGs. Taken together, this study provides a comprehensive view of the differential impacts of EV71 and CA16 infection on 84 genes in the IFN pathway, shedding light on the different resistances of these viruses to type I IFN treatment and cytotoxic effects in RD cells.  相似文献   

5.
Phenolic glycolipids (PGLs) are polyketide synthase-derived glycolipids unique to pathogenic mycobacteria. PGLs are found in several clinically relevant species, including various Mycobacterium tuberculosis strains, Mycobacterium leprae, and several nontuberculous mycobacterial pathogens, such as M. marinum. Multiple lines of investigation implicate PGLs in virulence, thus underscoring the relevance of a deep understanding of PGL biosynthesis. We report mutational and biochemical studies that interrogate the mechanism by which PGL biosynthetic intermediates (p-hydroxyphenylalkanoates) synthesized by the iterative polyketide synthase Pks15/1 are transferred to the noniterative polyketide synthase PpsA for acyl chain extension in M. marinum. Our findings support a model in which the transfer of the intermediates is dependent on a p-hydroxyphenylalkanoyl-AMP ligase (FadD29) acting as an intermediary between the iterative and the noniterative synthase systems. Our results also establish the p-hydroxyphenylalkanoate extension ability of PpsA, the first-acting enzyme of a multisubunit noniterative polyketide synthase system. Notably, this noniterative system is also loaded with fatty acids by a specific fatty acyl-AMP ligase (FadD26) for biosynthesis of phthiocerol dimycocerosates (PDIMs), which are nonglycosylated lipids structurally related to PGLs. To our knowledge, the partially overlapping PGL and PDIM biosynthetic pathways provide the first example of two distinct, pathway-dedicated acyl-AMP ligases loading the same type I polyketide synthase system with two alternate starter units to produce two structurally different families of metabolites. The studies reported here advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids.  相似文献   

6.
7.
The authors used the method of oblique illumination for detection of the state of the population of meningococcus cultures. In studying 48 strains there were revealed three types of fluorescence of the colonies: bright orange with a transition into greenish-light blue along the lower margin (the I type), bright light blue with a narrow orange or green upper margin (the II type) and greyish-light blue colonies (the III type). The type of fluorescence was not associated with the sero-group specificity. Populations of meningococcus cultures, depending on conditions and duration of growth on the nutrient medium could consist both of the colonies with the same type of fluorescence, and also represent a combination of colonies with a different type of fluorescence. The colonies of the I and II types of fluorescence had marked group specificity, but mutation occurred during passage and the III type of fluorescence formed with a loss of serological specificity. Continuous selection of the colonies of the I and the II types of fluorescence permitted to preserve the population with specific properties necessary for production of diagnostic and vaccine preparations for a long time.  相似文献   

8.
The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by two-dimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.  相似文献   

9.
The study of S. sonnei in phase I, irrespective of their virulence, has revealed the existence of at least 3 types of profiles of large plasmids: (I)A having a single plasmid with a molecular weight of about 120 MD; (I)B having, alongside plasmid pSS120, a plasmid with a molecular weight of about 60 MD; (I)C, represented only by vaccine strain 6S, having three plasmids with molecular weights of about 80, 60 and 37 MD. The plasmid profiles of rough S. sonnei in phase II are characterized by the absence of large plasmids with a molecular weight of 120-80 MD, typical of bacteria in phase I, and can be in their turn subdivided, in accordance with the type of the initial culture, into three subvariants (II)A, (II)B and (II)C. The plasmid profiles of rough S. sonnei (R-forms and phase II) completely coincide. The biosynthesis of the specific antigen of S. sonnei in phase I can be determined by smaller derivatives obtained from large plasmid pSS120 by deletion (e.g., by a plasmid with a molecular weight of about 80 MD, such as plasmid pSS80).  相似文献   

10.
In the study, we assessed the identity of locally produced BCG vaccine via screening for the presence of genetic markers specific for particular Mycobacterium bovis BCG substrains – RD8, RD2, senX3-regX3, RD14, RD16, ΔRD1, DU2, a second copy of IS6110, mutation D322G in phoR, and deletions in fadD26-ppsA and Rv3887c regions. In order to increase the specificity of the multiplex-PCR test for locally produced BCG vaccine, we have modified previously developed primer sets by the introduction of a primer pair specific for deletion in Rv3887c. The modified multiplex-PCR specifically and reproducibly distinguished both BCG Moreau sublineages, and allowed, with no decrease in power, differentiation of BCG substrains of different origin. The growing knowledge of genetic differences among BCG vaccine strains enables improvements in the specificity of identity tests that will be useful both for routine release of vaccines and potential applications in clinical practice. Modified multiplex-PCR accompanied by PFGE analysis can serve as specific tools to monitor consistency in BCG manufacture.  相似文献   

11.
Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2-/-) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.  相似文献   

12.
Subtractive DNA hybridization of pathogenic M. bovis and BCG, and comparative genome-wide DNA microarray analysis of M. tuberculosis H37Rv and BCG identified several RD, designated as RD1 to RD16, between M. tuberculosis and M. bovis on the one hand and BCG on the other. These regions cover 108 ORF of M. tuberculosis H37Rv, and are deleted from all 13 BCG sub-strains currently used as anti-tuberculosis vaccines in different parts of the world. In this study, we evaluated cellular and humoral immune response in C57BL/6 mice immunized with the PPE protein Rv3425, encoded by an ORF found in RD11 of M. tuberculosis. Rv3425 protein induced an increased Th1/Th2 type immune response in mice, characterized by an elevated concentration of IFN-gamma in antigen stimulated splenocyte culture and a strong IgG(1) antibody response. These results provide evidence on the immunogenicity of the PPE protein Rv3425 which, together with its reported immunodominant characteristics, imply that it may be a candidate for development of a vaccine for the control of TB.  相似文献   

13.
Hwang SA  Kruzel ML  Actor JK 《Biochimie》2009,91(1):76-85
The current vaccine for tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is an attenuated strain of Mycobacterium bovis bacillus Calmette-Guerin (BCG). BCG has proven to be effective in children, however, efficacy wanes in adulthood. Lactoferrin, a natural protein with immunomodulatory properties, is a potential adjuvant candidate to enhance efficacy of BCG. These studies define bovine lactoferrin as an enhancer of the BCG vaccine, functioning in part by modulating macrophage ability to present antigen and stimulate T-cells. BCG-infected bone marrow derived macrophages (BMMs) cultured with bovine lactoferrin increased the number of MHC II(+) expressing cells. Addition of IFN-gamma and lactoferrin to BCG-infected BMMs enhanced MHC II expressiona dna increased the ratio of CD86/CD80. Lactoferrin treated BCG-infected BMMs were able to stimulate an increase in IFN-gamma production from presensitized CD3(+) splenocytes. Together, these results demonstrate that bovine lactoferrin is capable of modulating BCG-infected macrophages to enhance T-cell stimulation through increased surface expression of antigen presentation and co-stimulatory molecules, which potentially explains the observed in vivo bovine lactoferrin enhancement of BCG vaccine efficacy to protect against virulent MTB infection.  相似文献   

14.
多重PCR方法特异性鉴定卡介苗菌株多糖核酸的初探   总被引:1,自引:0,他引:1  
与结核分枝杆菌H37Rv菌株进行比较,BCG菌株可找到一个特殊的缺失片段RD1,它存在于所有有毒分枝杆菌中,而在所有的卡介苗菌株中均缺失。应用多重PCR方法检测RD1区的存在与否,可以区别BCG和其它有毒的分枝杆菌。卡介菌多糖核酸来源于卡介菌,检测成品中DNA是否含有RD1区,能特异性地鉴别该制品。结果显示牛分枝杆菌标准株和结核分枝杆菌H37Rv存在RD1区;而卡介菌多糖核酸注射液和国内皮内注射用BCG疫苗生产用菌株扩增产物一致,提示均缺失RD1区。因此,这种多重PCR方法适用于卡介菌多糖核酸注射液的特异性鉴别试验。  相似文献   

15.
The influence of iron concentration in Sauton's medium solidified with agar on the type of colonies of BCG-Poland substrains, BCG-Rio de Janeiro, BCG-France, BCG-Denmark and BCG-Japan substrains has been examined. Of all the studied BCG substrains only the BCG-Poland substrain formed rough (R) and smooth (S) colonies. In the investigated substrains rough colonies became smaller with the decrease of iron concentration but they retained their characteristic surface roughness. The smooth colonies which in the same conditions appeared only in BCG-Poland substrain did not display such dependency on iron concentration. When the incubation period was prolonged secondary rough colonies appeared among the smooth ones, regardless of the iron concentration in the medium.  相似文献   

16.
Although large human populations have been safely immunized against tuberculosis with two live vaccines, Mycobacterium bovis BCG or Mycobacterium microti, the vole bacillus, the molecular basis for the avirulence of these vaccine strains remains unknown. Comparative genomics has identified a series of chromosomal deletions common to both virulent and avirulent species but only a single locus, RD1, that has been deleted from M. bovis BCG and M. microti. Restoration of RD1, by gene knock-in, resulted in a marked change in colonial morphology towards that of virulent tubercle bacilli. Three RD1-encoded proteins were localized in the cell wall, and two of them, the immunodominant T-cell antigens ESAT-6 and CFP-10, were also found in culture supernatants. The BCG::RD1 and M. microti::RD1 knock-ins grew more vigorously than controls in immunodeficient mice, inducing extensive splenomegaly and granuloma formation. Increased persistence and partial reversal of attenuation were observed when immunocompetent mice were infected with the BCG::RD1 knock-in, whereas BCG controls were cleared. Knocking-in five other RD loci did not affect the virulence of BCG. This study describes a genetic lesion that contributes to safety and opens new avenues for vaccine development.  相似文献   

17.
Cellular immune responses are responsible for both protection and pathogenesis in tuberculosis, and are mediated/regulated by a complex network of pro-inflammatory, T helper (Th) type 1 and type 2 cytokines. In this study, the secretion of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8 and IL-1β; Th1 cytokines interferon-gamma (IFN-γ), IL-2 and tumor necrosis factor-beta (TNF-β); and Th2 cytokines IL-4, IL-5 and IL-10 by the peripheral blood mononuclear cells (PBMCs) of pulmonary tuberculosis patients was studied. PBMCs were cultured in vitro in the absence and presence of complex mycobacterial antigens and peptides corresponding to 11 regions of difference (RD) of Mycobacterium tuberculosis that are deleted/absent in all vaccine strains of Mycobacterium bovis bacillus Calmette-Guérin (BCG). The culture supernatants were tested for secreted cytokines by FlowCytomix assay. PBMCs from the majority of patients (53-100%) spontaneously secreted detectable concentrations of all cytokines tested, except for IL2 (29%) and IL-10 (41%). The profiles of proinflammatory cytokines were largely similar for various complex antigens or RD peptides. However, with respect to Th1 and Th2 cytokines, the antigens could be divided into three groups; the first with Th1-bias (culture filtrate of M. tuberculosis, RD1, RD5, RD7, RD9 and RD10), the second with Th2-bias (whole cells and cell walls of M. tuberculosis, RD12, RD13 and RD15), and the third without Th1/Th2-bias (M. bovis BCG, RD4, RD6 and RD11). Complex mycobacterial antigens and RD proteins with Th1- and Th2-biases may have roles in protection and pathogenesis of tuberculosis, respectively.  相似文献   

18.
Polyketide synthases (PKSs) of Mycobacterium tuberculosis are increasingly being seen as producers of virulence factors that are important for pathogenesis by the bacterium. Thus, the phenolphthiocerol synthase PKS cluster of M. tuberculosis is responsible, in part, for the synthesis of a virulence determinant called phthiocerol dimycocerosate (PDIM). Here, we provide evidence that the PpsE protein, which is part of that cluster, interacts with the type II thioesterase TesA of M. tuberculosis. The interaction was demonstrated by employing a two-hybrid system, and confirmed using a GST (glutathione S-transferase) pull-down assay after both proteins had been purified to homogeneity. Based on the present findings, a revised model for the processing of polyketides during the synthesis of PDIM is presented.Communicated by W. Goebel  相似文献   

19.
AIMS: Phthiocerol dimycocerosate (PDIM) waxes and other lipids are necessary for successful Mycobacterium tuberculosis infection, although the exact role of PDIM in host-pathogen interactions remains unclear. In this study, we investigated the contribution of tesA, drrB, pks6 and pks11 genes in complex lipid biosynthesis in M. tuberculosis. METHODS AND RESULTS: Four mutants were selected from M. tuberculosis H37Rv transposon mutant library. The transposon insertion sites were confirmed to be within the M. tuberculosis open reading frames for tesA (a probable thioesterase), drrB (predicted ABC transporter), pks11 (putative chalcone synthase) and pks6 (polyketide synthase). The first three of these transposon mutants were unable to generate PDIM and the fourth lacked novel polar lipids. CONCLUSIONS: Mycobacterium tuberculosis can be cultivated in vitro without the involvement of certain lipid synthesis genes, which may be necessary for in vivo pathogenicity. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of transposon mutants is a new functional genomic approach for the eventual definition of the mycobacterial 'lipidome'.  相似文献   

20.
Strains of Saccharomyces which contained cells of respirationally normal (wild-type) and of respiration-deficient (RD) mutants were grown on untrient agar plates containing 20-23 mg/liter of either brom cresol green (BCG) or brom phenol blue (BPB). Glucose content of the media was varied experimentally in the range of 1.5-6%. After 2-4 days of incubation, normal colonies were very palely stained whereas RD colonies were drak green with BCG and dark blue with BPB. Optimum glucose content in the medium was 2-3% for S. cerevisiae, S. carlbergensis and S. chevalieri, but Fleischmann's (baker's) yeast developed the best color contrast with 4-5% glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号