首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease.  相似文献   

2.
《Future virology》2010,5(3):273-286
Picornaviruses are small, non-enveloped, single stranded, positive sense RNA viruses which cause multiple diseases including myocarditis/dilated cardiomyopathy, type 1 diabetes, encephalitis, myositis, orchitis and hepatitis. Although picornaviruses directly kill cells, tissue injury primarily results from autoimmunity to self antigens. Viruses induce autoimmunity by: aborting deletion of self-reactive T cells during T cell ontogeny; reversing anergy of peripheral autoimmune T cells; eliminating T regulatory cells; stimulating self-reactive T cells through antigenic mimicry or cryptic epitopes; and acting as an adjuvant for self molecules released during virus infection. Most autoimmune diseases (SLE, rheumatoid arthritis, Grave's disease) predominate in females, but diseases associated with picornavirus infections predominate in males. T regulatory cells are activated in infected females because of the combined effects of estrogen and innate immunity.  相似文献   

3.
B cells present BCR V region-derived Id-peptides on their MHC class II molecules to Id-specific CD4+ T cells. Prolonged Id-driven T-B collaboration could cause autoimmune disease, but this possibility is difficult to test in normal individuals. We have investigated whether mice doubly transgenic for an Id+ Ig L chain and an Id-specific TCR develop autoimmune disease. Surprisingly, T cell tolerance was not complete in these mice because a low frequency of weakly Id-reactive CD4+ T cells accumulated with age. These escapee Id-specific T cells provided chronic help for Id+ B cells, resulting in a lethal systemic autoimmune disease including germinal center reactions, hypergammaglobulinemia, IgG autoantibodies, glomerulonephritis, arthritis, skin affection, and inflammatory bowel disease. Inflamed tissues contained foci of Id-driven T-B collaboration, with deposition of IgG and complement. The disease could be transferred with B and T cells. The results demonstrate a novel mechanism for development of autoimmune disease in which self-reactive Id+ B cells receive prolonged help from Id-specific T cells, thus bypassing the need for help from T cells recognizing conventional Ag.  相似文献   

4.
Neonatal splenocytes, neonatal thymocytes, or phenotypically mature adult thymocytes, transferred from normal BALB/c mice to syngeneic athymic nu/nu (or SCID) mice, led to autoimmune oophoritis and autoimmune gastritis, with corresponding serum autoantibodies, in the recipients. The overall disease incidence was 73%; the pathology ranged from mild to severe, with complete loss of ovarian follicles and gastric parietal cells. CD4+ neonatal spleen cells and CD4+ CD8- adult thymocytes were required for autoimmune disease induction. Adult spleen cells did not elicit disease, but they prevented disease when co-transferred with neonatal spleen cells. However, in confirmation of an earlier report by Sakaguchi et al., (J. Exp. Med. 161:72, 1985), a subset of adult splenic T cells expressing a low level of CD5 molecules elicited similar autoimmune diseases. Thus, self-reactive T cells responsible for autoimmune disease of the stomach and ovary are not effectively deleted in the thymus, and they exist in the peripheral lymphoid organs of normal mice. We conclude that the functional expression of the self-reactive T cells is ontogenetically regulated; whereas T cells in the neonatal mice readily elicited autoimmune diseases in nu/nu recipients, regulatory cells may render self-reactive T cells in the normal adults unresponsive.  相似文献   

5.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

6.
Previously we have shown that T cell responses to the mycobacterial 60-kDa heat shock protein (hsp60) peptide M256-270 mediated protection against adjuvant arthritis in Lewis rats. We have demonstrated now that M256-270-primed T cells become highly reactive to naive syngeneic APC upon repetitive restimulation in vitro with peptide M256-265, comprising the conserved core of peptide M256-270. These autoproliferative responses in the absence of added Ag were MHC class II restricted and resulted in the production of IL-4/IL-10 and IFN-gamma. Enhanced autoproliferation and expression of the cell surface molecule B7.2 by these T cells were observed in response to syngeneic heat-shocked APC, which indicated that the autoproliferation and expression of B7.2 resulted from the recognition of endogenously expressed and processed hsp. Despite their strong autoreactivity, upon transfer such T cells were found to induce a significant disease reduction in adjuvant arthritis. In contrast, T cells both primed and restimulated with peptide M256-270 became unresponsive toward syngeneic APC as well as toward the conserved core peptide M256-265, and they were devoid of protective capacity. This study demonstrates that the loss of self-tolerance toward hsp60 does not necessarily lead to autoimmune disease, but that hsp60-specific self-reactive and autoproliferative T cells may mediate T cell regulation in arthritis.  相似文献   

7.
Neonatal infection of the mouse T lymphotropic virus (MTLV), a member of herpes viridae, causes various organ-specific autoimmune diseases, such as autoimmune gastritis, in selected strains of normal mice. The infection selectively depletes CD4+ T cells in the thymus and periphery for 2-3 wk from 1 wk after infection. Thymectomy 3 wk after neonatal MTLV infection enhances the autoimmune responses and produces autoimmune diseases at higher incidences and in a wider spectrum of organs than MTLV infection alone. On the other hand, inoculation of peripheral CD4+ cells from syngeneic noninfected adult mice prevents the autoimmune development. These autoimmune diseases can be adoptively transferred to syngeneic athymic nude mice by CD4+ T cells. The virus is not detected by bioassay in the organs/tissues damaged by the autoimmune responses. Furthermore, similar autoimmune diseases can be induced in normal mice by manipulating the neonatal thymus/T cells (e.g., by neonatal thymectomy) without virus infection. These results taken together indicate that neonatal MTLV infection elicits autoimmune disease by primarily affecting thymocytes/T cells, not self Ags. It may provoke or enhance thymic production of CD4+ pathogenic self-reactive T cells by altering the thymic clonal deletion mechanism, or reduce the production of CD4+ regulatory T cells controlling self-reactive T cells, or both. The possibility is discussed that other T cell-tropic viruses may cause autoimmunity in humans and animals by affecting the T cell immune system, not the self Ags to be targeted by the autoimmunity.  相似文献   

8.
Differentiation of B cells into plasma cells represents a critical immunoregulatory checkpoint where neutralizing Abs against infectious agents must be selected whereas self-reactive Abs are suppressed. Bacterial LPS is a uniquely potent bacterial immunogen that can bypass self-tolerance within the T cell repertoire. We show here that during LPS-induced plasma cell differentiation, the ERK intracellular signaling pathway serves as a pivotal switch integrating opposing inputs from Ag via BCR and from the two best characterized B cell differentiation factors made by T cells, IL-2 and IL-5. Continuous Ag receptor signaling through the RAS/MEK/ERK pathway, as occurs in self-reactive B cells, inhibits LPS induction of Blimp-1 and the plasma cell differentiation program. Differentiation resumes after a transient pulse of Ag-ERK signaling, or upon inactivation of ERK by IL-2 and IL-5 through induction of dual-specificity phosphatase 5 (Dusp5). The architecture of this molecular switch provides a framework for understanding the specificity of antibacterial Ab responses and resistance to bacterially induced autoimmune diseases such as Guillain-Barré syndrome.  相似文献   

9.
Autoimmunity occurs when T cells, B cells or both are inappropriately activated, resulting in damage to one or more organ systems. Normally, high-affinity self-reactive T and B cells are eliminated in the thymus and bone marrow through a process known as central immune tolerance. However, low-affinity self-reactive T and B cells escape central tolerance and enter the blood and tissues, where they are kept in check by complex and non-redundant peripheral tolerance mechanisms. Dysfunction or imbalance of the immune system can lead to autoimmunity, and thus elucidation of normal tolerance mechanisms has led to identification of therapeutic targets for treating autoimmune disease. In the past 15 years, a number of disease-modifying monoclonal antibodies and genetically engineered biologic agents targeting the immune system have been approved, notably for the treatment of rheumatoid arthritis, inflammatory bowel disease and psoriasis. Although these agents represent a major advance, effective therapy for other autoimmune conditions, such as type 1 diabetes, remain elusive and will likely require intervention aimed at multiple components of the immune system. To this end, approaches that manipulate cells ex vivo and harness their complex behaviors are being tested in preclinical and clinical settings. In addition, approved biologic agents are being examined in combination with one another and with cell-based therapies. Substantial development and regulatory hurdles must be overcome in order to successfully combine immunotherapeutic biologic agents. Nevertheless, such combinations might ultimately be necessary to control autoimmune disease manifestations and restore the tolerant state.KEY WORDS: Tolerance, Autoimmune, Biologic  相似文献   

10.
A large body of evidence indicates that T cell-mediated dominant suppression of self-reactive T cells is indispensable for maintaining immunologic unresponsiveness to self-constituents (i.e., self-tolerance) and preventing autoimmune disease. CD25+CD4+ regulatory T cells naturally present in normal animals, in particular, engage in this function, as their reduction or functional abnormality leads to the development of autoimmune disease in otherwise normal animals. They are at least in part produced by the normal thymus as a functionally mature and distinct subpopulation of T cells. Recent studies have demonstrated that CD25+CD4+ regulatory T cells control not only autoimmune reactions but also other immune responses, including tumor immunity, transplantation tolerance and microbial infection. Thus, this unique population of regulatory T cells can be exploited to control pathological as well as physiological immune responses.  相似文献   

11.
OM-89 (Subreum) is anE. coli extract used for oral administration in the treatment of rheumatoid arthritis. It contains bacterial heat shock proteins, namely hsp60 and hsp70, which were shown to be major immunogenic constitutents of the drug. Immunity to bacterial heat-shock antigens was shown to be a means of immunomodulation of (experimental) autoimmune disease and possibly inflammation in general. This was demonstrated for mycobacterial hsp60 respectively hsp70 in autoimmune disease models for arthritis, diabetes and encephalitis. Parallel to the effects displayed by immunisation with hsp, oral administration of hsp-containing OM-89 was found to modify autoimmune disease in a number of animal models, such as for arthritis, diabetes and SLE. In rats immunisation with OM-89 was found to lead to proliferative T cell responses to hsp60 and hsp70 of bothE. coli and mycobacterial origin. Conversely, immunisation with hsp antigens could induce T cell reactivity specific for OM-89. Given this and the autoimmune disease modulating properties of both hsp and OM-89 it is argued that OM-89 acts via the same mechanism as proposed for hsp: that peripheral tolerance is induced at the level of regulatory T cells with specificity for heat-shock proteins. This may constitute one mode of action for OM-89 as an arthritis suppressive oral drug in man.  相似文献   

12.
Both NZB nu/+ and NZW nu/+ mice were microbially clean by cesarean section. The (NZB x NZW)F1 hybrid (NZB/W) nu/nu mice and nu/+ littermates were then generated by mating of NZB nu/+ with NZW nu/+mice under specific pathogen-free conditions. The female NZB/W F1 nu/nu mice did not develop autoimmune kidney disease, whereas all of nu/+ female littermates mice exhibited proteinuria and died of renal failure with a 50% survival time of 35 wk. Namely, nude mice had no signs of proteinuria up to the time of their death caused by other diseases rather than glomerulonephritis, and their mean survival time was greater than 45 wk. Nude mice had also no anti-ssDNA antibody in their serum. However, splenic B cells of NZB/W nude mice exhibited hyper-responsiveness to both LPS and B151-TRF2, a T cell-derived polyclonal B cell-stimulation factor, and produced large numbers of Ig-secreting cells and anti-TNP plaque-forming cells as well as anti-ssDNA antibody comparable to the nu/+ littermate mice. Interestingly, thymus-engrafted NZB/W nude mice developed autoimmune disease exemplified by the induction of anti-ssDNA antibody and proteinuria at approximately the same time as their nu/+ littermates. These results indicate that the B cell hyper-responsiveness found in NZB/W mice is apparently determined by the T cell-independent process, and T cells are obligatorily required for the development of autoimmune disease in NZB/W mice.  相似文献   

13.
CD4+ CD25+ regulatory T cells (T(Reg)) play a critical role in the control of autoimmunity. However, little is known about how T(Reg) suppress self-reactive T cells in vivo, thus limiting the development of T(Reg)-based therapy for treating autoimmune diseases. This is in large part due to the dependency on a state of lymphopenia to demonstrate T(Reg)-mediated suppression in vivo and the unknown Ag specificity of T(Reg) in most experimental models. Using a nonlymphopenic model of autoimmune pneumonitis and T(Reg) with known Ag specificity, in this study we demonstrated that these T(Reg) can actively suppress activation of self-reactive T cells and protect mice from fatal autoimmune pneumonitis. The protection required T(Reg) with the same Ag specificity as the self-reactive T cells and depended on IL-10 and TGF-beta. These results suggest that suppression of autoimmunity by T(Reg) in vivo consists of multiple layers of regulation and advocate for a strategy involving Ag-specific T(Reg) for treating organ-specific autoimmunity, because they do not cause generalized immune suppression.  相似文献   

14.
The potential for self-reactive T cells to cause autoimmune disease is held in check by Foxp3(+) regulatory T cells (Tregs), essential mediators of peripheral immunological tolerance. Tregs have the capacity to suppress multiple branches of the immune system, tightly controlling the different subsets of effector T cells across multiple different tissue environments. Recent genetic experiments have found mutations that disrupt specific Treg: effector T cell relationships, leading to the possibility that subsets of Tregs are required to suppress each subset of effector T cells. Here we review the environmental factors and mechanisms that allow Tregs to suppress specific subsets of effector T cells, and find that a parsimonious explanation of the genetic data can be made without invoking Treg subsets. Instead, Tregs show a functional and chemotactic plasticity based on microenvironmental influences that allows the common pool of cells to suppress multiple distinct immune responses.  相似文献   

15.
16.
Autoimmunity is often accompanied by the development of ectopic lymphoid tissues in the target organ, and these tissues have been believed to have close relevance to the severity of the disease. However, the true relationship between the extent of such lymphoid structures and the intensity or type of immune responses mediated by self-reactive T cells has remained unclear. In the present study, we generated transgenic mice expressing TCR from an autoimmune gastritis (AIG)-inducing Th1 cell clone specific for one of the major stomach self-Ags, H(+)/K(+)-ATPase alpha subunit. The transgenic mice spontaneously develop massive lymphoid neogenesis with a highly organized tissue structure in the gastric mucosa, demonstrating Ag-specific, T cell-mediated induction of the lymphoid tissues. Nevertheless, the damage of surrounding tissue and autoantibody production were considerably limited compared with those in typical AIG induced by neonatal thymectomy. Such a moderate pathology is likely due to the locally restricted activation and Th2 skewing of self-reactive T cells, as well as the accumulation of naturally occurring regulatory T cells in the target organ. Altogether, the findings suggest that lymphoid neogenesis in chronic autoimmunity does not simply correlate with the destructive response; rather, the overall activation status of the T cell network, i.e., the balance of self-reactivity and tolerance, in the local environment has an impact.  相似文献   

17.
Previous studies have found that a 95% reduction in TCR expression does not adversely affect response to foreign Ags, indicating that T cells have an excess of TCR for Ag recognition. Because self-reactive T cells may have low affinity for peptide:MHC, we investigated whether myelin-reactive T cells require these excess TCR for optimal response. To test this concept, mAb were used to effectively reduce the TCR of Valpha3.2 and Vbeta11 TCR transgenic mice (referred to as 2D2). After masking the TCR with either continuous or prepulsed anti-Valpha3.2 Ab, 2D2 cells were immediately stimulated with myelin oligodendrocyte glycoprotein (MOG)(35-55). These cells have a dramatic Ab dose-dependent reduction in proliferation, with a small reduction in TCR expression leading to a 50% reduction in proliferation in vitro. Additionally, 2D2 cells, treated with anti-Valpha3.2 Ab and peptide for 7 days, were re-stimulated with MOG and continue to have a dose-dependent reduction in proliferation. TCR quantitation identified the same amount of TCR on the Ab/peptide treatment compared with the peptide-only control. These results point out that the combination of reduced TCR and peptide challenge leads to a phenotypic change resulting in T cell anergy. Importantly, adoptive transfer of these anergic T cells upon autoimmune disease induction had a marked reduction in disease severity compared with untreated MOG-specific CD4(+) T cells, which had significant autoimmune disease manifested by optic neuritis and death. Thus, reduction of TCR expression may provide a potential therapy for self-reactive T cells involved in autoimmune diseases through the induction of anergy.  相似文献   

18.
Multiple sclerosis (MS) is believed to be an autoimmune disease mediated by T cells specific for CNS Ags. MS lesions contain both CD4+ and CD8+ T lymphocytes. The contribution of CD4+ T cells to CNS autoimmune disease has been extensively studied in an animal model of MS, experimental autoimmune encephalomyelitis. However, little is known about the role of autoreactive CD8+ cytotoxic T cells in MS or experimental autoimmune encephalomyelitis. We demonstrate here that myelin basic protein (MBP) is processed in vivo by the MHC class I pathway leading to a MBP79-87/Kk complex. The recognition of this complex by MBP-specific cytotoxic T cells leads to a high degree of tolerance in vivo. This study is the first to show that the pool of self-reactive lymphocytes specific for MBP contain MHC class I-restricted T cells whose response is regulated in vivo by the induction of tolerance.  相似文献   

19.
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.  相似文献   

20.
Mounting evidence from animal models has demonstrated that alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. We have developed an altered peptide ligand of type II collagen, referred to as A9, which differentially regulates TCR signaling in murine T cells leading to suppression of arthritis in the experimental model of collagen-induced arthritis. This study delineates the T cell signaling pathway used by T cells stimulated by the A9·I-A(q) complex. We have found that T cells activated by A9 bypass the requirement for Zap-70 and CD3-ζ and signal via FcRγ and Syk. Using collagen-specific T cell hybridomas engineered to overexpress either Syk, Zap-70, TCR-FcRγ, or CD3-ζ, we demonstrate that A9·I-A(q) preferentially activates FcRγ/Syk but not CD3-ζ/Zap-70. Moreover, a genetic absence of Syk or FcRγ significantly reduces the altered peptide ligand induction of the nuclear factor GATA3. By dissecting the molecular mechanism of A9-induced T cell signaling we have defined a new alternate pathway that is dependent upon FcRγ and Syk to secrete immunoregulatory cytokines. Given the interest in using Syk inhibitors to treat patients with rheumatoid arthritis, understanding this pathway may be critical for the proper application of this therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号