首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein kinase inhibitor as an antimycobacterial agent   总被引:2,自引:0,他引:2  
The protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) was found to inhibit the growth of two different mycobacterial strains, the slow-growing Mycobacterium bovis Bacille Calmette Guerin (BCG) and the fast-growing saprophyte Mycobacterium smegmatis mc2 155, in a dose-dependent manner. While screening for the effect of kinase inhibitors on mycobacterial growth, millimolar concentrations of H7 induced a 40% decrease in the growth of M. bovis BCG when measured as a function of oxidative phosphorylation. This H7-induced decrease in growth was shown to involve a 2-log fold decrease in the viable counts of M. smegmatis within a 48-h period and a 50% reduction in the number of BCG viable counts within a 10-day period. Micromolar concentrations of H7 compound induced a significant decrease in the activity of the Mycobacterium tuberculosis protein serine/threonine kinase (PSTK) PknB. The inhibition of mycobacterial growth as well as the inhibition of a representative M. tuberculosis protein serine/threonine kinase PknB suggests that conventional PSTK inhibitors can be used to study the role that the mycobacterial PSTK family plays in controlling bacterial growth.  相似文献   

2.
The inhA and kasA genes of Mycobacterium tuberculosis have each been proposed to encode the primary target of the antibiotic isoniazid (INH). Previous studies investigating whether overexpressed inhA or kasA could confer resistance to INH yielded disparate results. In this work, multicopy plasmids expressing either inhA or kasA genes were transformed into M. smegmatis, M. bovis BCG and three different M. tuberculosis strains. The resulting transformants, as well as previously published M. tuberculosis strains with multicopy inhA or kasAB plasmids, were tested for their resistance to INH, ethionamide (ETH) or thiolactomycin (TLM). Mycobacteria containing inhA plasmids uniformly exhibited 20-fold or greater increased resistance to INH and 10-fold or greater increased resistance to ETH. In contrast, the kasA plasmid conferred no increased resistance to INH or ETH in any of the five strains, but it did confer resistance to thiolactomycin, a known KasA inhibitor. INH is known to increase the expression of kasA in INH-susceptible M. tuberculosis strains. Using molecular beacons, quantified inhA and kasA mRNA levels showed that increased inhA mRNA levels corre--lated with INH resistance, whereas kasA mRNA levels did not. In summary, analysis of strains harbouring inhA or kasA plasmids yielded the same conclusion: overexpressed inhA, but not kasA, confers INH and ETH resistance to M. smegmatis, M. bovis BCG and M. tuberculosis. Therefore, InhA is the primary target of action of INH and ETH in all three species.  相似文献   

3.
Mycobacterium tuberculosis is a natural mutant with inactivated oxidative stress regulatory gene oxyR. This characteristic has been linked to the exquisite sensitivity of M. tuberculosis to isonicotinic acid hydrazide (INH). In the majority of mycobacteria tested, including M. tuberculosis, oxyR is divergently transcribed from ahpC, a gene encoding a homolog of the subunit of alkyl hydroperoxide reductase that carries out substrate peroxide reduction. Here we compared ahpC expression in Mycobacterium smegmatis, a mycobacterium less sensitive to INH, with that in two highly INH sensitive species, M. tuberculosis and Mycobacterium aurum. The ahpC gene of M. smegmatis was cloned and characterized, and the 5' ends of ahpC mRNA were mapped by S1 nuclease protection analysis. M. smegmatis AhpC and eight other polypeptides were inducible by exposure to H2O2 or organic peroxides, as determined by metabolic labeling and Western blot (immunoblot) analysis. In contrast, M. aurum displayed differential induction of only one 18-kDa polypeptide when exposed to organic peroxides. AhpC could not be detected in this organism by immunological means. AhpC was also below detection levels in M. tuberculosis H37Rv. These observations are consistent with the interpretation that ahpC expression and INH sensitivity are inversely correlated in the mycobacterial species tested. In further support of this conclusion, the presence of plasmid-borne ahpC reduced M. smegmatis susceptibility to INH. Interestingly, mutations in the intergenic region between oxyR and ahpC were identified and increased ahpC expression observed in deltakatG M. tuberculosis and Mycobacterium bovis INH(r) strains. We propose that mutations activating ahpC expression may contribute to the emergence of INH(r) strains.  相似文献   

4.
Hayward D  Wiid I  van Helden P 《IUBMB life》2004,56(3):131-138
Mycothiol (MSH) is the major cellular thiol in Mycobacterium tuberculosis (M.tb). We hypothesize that the mycothiol-dependent detoxification pathway may serve an important role during oxygen stress management in M. tuberculosis, derived from normal aerobic metabolism, the macrophage environment and through the action of anti-tubercular antibiotics, such as Isoniazid (INH). Total mRNA and DNA were isolated from M. bovis BCG at different stages of growth in 7H9 mycobacterial medium. Three genes involved in mycothiol metabolism and encoding the enzymes mycothiol S-conjugate amidase (Mca, Rv1082), NADPH dependent mycothiol reductase (mtr, Rv2855), and N-Acetyl-1-D-myo-Inosityl-2-Amino-2-Deoxy-alpha-D-Glucopyranoside Deacetylase (GlcNAc-Ins deacetylase, Rv1170 or mshB) were investigated for genomic rearrangements and expression. The results show that the genomic domains of the genes remain conserved in evolutionary diverse and unrelated M. tuberculosis isolates. The genes encoding enzymes implicated in mycothiol reduction, mtr (Rv2855) and the mycothiol-dependant detoxification of electrophilic agents, Mca (Rv1082), are shown to be actively transcribed during logarithmic M. bovis BCG growth. The gene encoding GlcNAc-Ins deacetylase (the rate limiting mycothiol biosynthesis step) shows induction in the presence of INH. Antisense oligonucleotides to both GlcNAc-Ins deacetylase (Rv1170) and mtr (Rv2855) mRNA affect mycobacterial growth. In conclusion the results presented here suggest that these enzymes are sensitive to free radical generating antituberculosis drugs and may be useful targets for new drug development.  相似文献   

5.
6.
The receptor-like protein kinase PknB from Mycobacterium tuberculosis is encoded by the distal gene in a highly conserved operon, present in all actinobacteria, that may control cell shape and cell division. Genes coding for a PknB-like protein kinase are also found in many more distantly related gram-positive bacteria. Here, we report that the pknB gene can be disrupted by allelic replacement in M. tuberculosis and the saprophyte Mycobacterium smegmatis only in the presence of a second functional copy of the gene. We also demonstrate that eukaryotic Ser/Thr protein kinase inhibitors, which inactivate PknB in vitro with a 50% inhibitory concentration in the submicromolar range, are able to kill M. tuberculosis H37Rv, M. smegmatis mc(2)155, and Mycobacterium aurum A+ with MICs in the micromolar range. Furthermore, significantly higher concentrations of these compounds are required to inhibit growth of M. smegmatis strains overexpressing PknB, suggesting that this protein kinase is the molecular target. These findings demonstrate that the Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth and support the development of protein kinase inhibitors as new potential antituberculosis drugs.  相似文献   

7.
Until recently, genetic analysis of Mycobacterium tuberculosis, the causative agent of tuberculosis, was hindered by a lack of methods for gene disruptions and allelic exchange. Several groups have described different methods for disrupting genes marked with antibiotic resistance determinants in the slow-growing organisms Mycobacterium bovis bacillus Calmette-Guérin (BCG) and M. tuberculosis. In this study, we described the first report of using a mycobacterial suicidal plasmid bearing the counterselectable marker sacB for the allelic exchange of unmarked deletion mutations in the chromosomes of two substrains of M. bovis BCG and M. tuberculosis H37Rv. In addition, our comparison of the recombination frequencies in these two slow-growing species and that of the fast-growing organism Mycobacterium smegmatis suggests that the homologous recombination machinery of the three species is equally efficient. The mutants constructed here have deletions in the lysA gene, encoding meso-diaminopimelate decarboxylase, an enzyme catalyzing the last step in lysine biosynthesis. We observed striking differences in the lysine auxotrophic phenotypes of these three species of mycobacteria. The M. smegmatis mutant can grow on lysine-supplemented defined medium or complex rich medium, while the BCG mutants grow only on lysine-supplemented defined medium and are unable to form colonies on complex rich medium. The M. tuberculosis lysine auxotroph requires 25-fold more lysine on defined medium than do the other mutants and is dependent upon the detergent Tween 80. The mutants described in this work are potential vaccine candidates and can also be used for studies of cell wall biosynthesis and amino acid metabolism.  相似文献   

8.
9.
Whole-genome comparisons of the tubercle bacilli were undertaken using ordered bacterial artificial chromosome (BAC) libraries of Mycobacterium tuberculosis and the vaccine strain, Mycobacterium bovis BCG-Pasteur, together with the complete genome sequence of M. tuberculosis H37Rv. Restriction-digested BAC arrays of M. tuberculosis H37Rv were used in hybridization experiments with radiolabelled M. bovis BCG genomic DNA to reveal the presence of 10 deletions (RD1-RD10) relative to M. tuberculosis. Seven of these regions, RD4-RD10, were also found to be deleted from M. bovis, with the three M. bovis BCG-specific deletions being identical to the RD1-RD3 loci described previously. The distribution of RD4-RD10 in Mycobacterium africanum resembles that of M. tuberculosis more closely than that of M. bovis, whereas an intermediate arrangement was found in Mycobacterium microti, suggesting that the corresponding genes may affect host range and virulence of the various tubercle bacilli. Among the known products encoded by these loci are a copy of the proposed mycobacterial invasin Mce, three phospholipases, several PE, PPE and ESAT-6 proteins, epoxide hydrolase and an insertion sequence. In a complementary approach, direct comparison of BACs uncovered a third class of deletions consisting of two M. tuberculosis H37Rv loci, RvD1 and RvD2, deleted from the genome relative to M. bovis BCG and M. bovis. These deletions affect a further seven genes, including a fourth phospholipase, plcD. In summary, the insertions and deletions described here have important implications for our understanding of the evolution of the tubercle complex.  相似文献   

10.
tRNA genes in mycobacteria: organization and molecular cloning.   总被引:2,自引:0,他引:2       下载免费PDF全文
DNAs from nine mycobacteria cleaved with restriction endonucleases were hybridized with cDNA probes synthesized to tRNAs from Mycobacterium tuberculosis and Mycobacterium smegmatis. The tRNA genes are conserved, but their gross genomic organization has diverged in six of the nine species examined. Organisms of the M. tuberculosis H37Ra and H37Rv-M. bovis BCG complex appeared to have identical tRNA gene organization and were indistinguishable from each other. M. tuberculosis and M. smegmatis tRNA-derived cDNA probes hybridized differentially to tRNA-coding DNA segments in five of the species examined, suggesting the existence of qualitatively different tRNA pools in these slow- and fast-growing species. Mycobacterial DNAs hybridized with cDNA synthesized to 23S plus 16S rRNAs from Escherichia coli, and the data suggested that the tRNA genes map close to the rRNA genes. A gene bank of M. tuberculosis H37Rv DNA was constructed, and a recombinant plasmid, pSB2, coding for tRNA(s) and rRNA(s) was partially characterized. Plasmid pSB2 recognized a SalI restriction fragment length polymorphism (RFLP) in M. tuberculosis H37Rv and H37Ra; however, the RFLP is not linked to the tRNA-coding region. To the best of our knowledge, this is the first report of an RFLP which distinguishes the pathogenic strain M. tuberculosis H37Rv from its avirulent derivative H37Ra.  相似文献   

11.
Abstract The ability of Mycobacterium tuberculosis H37Rv and H37Ra, M. bovis BCG and M. smegmatis to induce the secretion of tumor necrosis factor-α (TNF-α) by cultured murine peritoneal macrophages is inversely related to their virulence. The avirulent species of mycobacteria which were unable to persist in macrophages were capable of inducing significant levels of TNF-α compared to that formed in cultures infected with the virulent M. tuberculosis H37Rv. This difference was also associated with an inherent toxicity by live H37Rv for macrophage cultures. Heat-killed H37Rv was non-toxic and induced significant levels of TNF-α; in contrast, live and heat-killed suspensions of avirulent mycobacteria had an equivalent ability to trigger TNF-α secretion. The TNF-α response was dose-dependent, related directly to the percentage of infected cells, and peaked 6–12 h post-infection. An early and vigorous TNF-α response appears to be a marker of macrophage resistance, while the downregulation of this response seems associated with macrophage toxicity and unrestricted mycobacterial growth.  相似文献   

12.
The antimycobacterial activity of "Hikari-Gintech" powder, which has photocatalytic activity, was examined in vitro. Both powder dissolved in liquid and Hikari-Gintech-coated cloths showed strong antimycobacterial activity against Mycobacterium tuberculosis H37Rv, M. bovis BCG Pasteur, multi-drug-resistant M. tuberculosis (a clinical isolate) and M. avium. Hikari-Gintech powder appeared to affect mycobacterial cell wall metabolism rather than mycobacterial DNA because no damage to mycobacterial DNA was detected after spraying with Hikari-Gintech solution.  相似文献   

13.
Intracellular survival plays a central role in the pathogenesis of Mycobacterium tuberculosis. To identify M. tuberculosis genes required for intracellular survival within macrophages, an M. tuberculosis H37Rv plasmid library was constructed by using the shuttle vector pOLYG. This plasmid library was electroporated into Mycobacterium smegmatis 1-2c, and the transformants were used to infect the human macrophage-like cell line U-937. Because M. smegmatis does not readily survive within macrophages, any increased intracellular survival is likely due to cloned M. tuberculosis H37Rv DNA. After six sequential passages of M. smegmatis transformants through U-937 cells, one clone (p69) was enriched more than 70% as determined by both restriction enzyme and PCR analyses. p69 demonstrated significantly enhanced survival compared to that of the vector control, ranging from 2.4- to 5.3-fold at both 24 and 48 h after infection. DNA sequence analysis revealed three open reading frames (ORFs) in the insert of p69. ORF2 (1.2 kb) was the only one which contained a putative promoter region and a ribosome-binding site. Deletion analysis of the p69 insert DNA showed that disruption of ORF2 resulted in complete loss of the enhanced intracellular survival phenotype. This gene was named the enhanced intracellular survival (eis) gene. By using an internal region of eis as a probe for Southern analysis, eis was found in the genomic DNA of various M. tuberculosis strains and of Mycobacterium bovis BCG but not in that of M. smegmatis or 10 other nonpathogenic mycobacterial species. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis showed that all M. smegmatis eis-containing constructs expressed a unique protein of 42 kDa, the predicted size of Eis. The expression of this 42-kDa protein directly correlated to the enhanced survival of M. smegmatis p69 in U-937 cells. These results suggest a possible role for eis and its protein product in the intracellular survival of M. tuberculosis.  相似文献   

14.
In 1993, the WHO declared tuberculosis a global emergency on the basis that there are 8 million new cases per year. The complete genome of the strain H37Rv of the causative microorganism, Mycobacterium tuberculosis, comprising 3924 genes has been sequenced. We compared the proteomes of two non-virulent vaccine strains of M. bovis BCG (Chicago and Copenhagen) with two virulent strains of M. tuberculosis (H37Rv and Erdman) to identify protein candidates of value for the development of vaccines, diagnostics and therapeutics. The mycobacterial strains were analysed by two-dimensional electrophoresis (2-DE) combining non-equilibrium pH gradient electrophoresis (NEPHGE) with SDS-PAGE. Distinct and characteristic proteins were identified by mass spectrometry and introduced into a dynamic 2-DE database (http://www.mpiib-berlin.mpg.de/2D-PAGE). Silver-stained 2-DE patterns of mycobacterial cell proteins or culture supernatants contained 1800 or 800 spots, respectively, from which 263 were identified. Of these, 54 belong to the culture supernatant. Sixteen and 25 proteins differing in intensity or position between M. tuberculosis H37Rv and Erdman, and H37Rv and M. bovis BCG Chicago, respectively, were identified and categorized into protein classes. It is to be hoped that the availability of the mycobacterial proteome will facilitate the design of novel measures for prevention and therapy of one of the great health threats, tuberculosis.  相似文献   

15.
The present investigation dealt with the identification of Mycobacterium tuberculosis and M. bovis by RD9 region and 500 bp fragment PCR assays. Eight M. tuberculosis and 5 M. bovis characterized and identified from 40 human sputum and 41 bovine lung specimens and 20 M. tuberculosis and 9 M. bovis strains maintained at Mycobacteria Laboratory, Indian Veterinary Research Institute were included in this study. In this way, 28 M. tuberculosis and 14 M. bovis strains and, for comparison and control purpose, M. tuberculosis H37Rv, M. bovis BCG, M. canetti, M. smegmatis, M. phlei, M. chelonae, M. kansasii, M. xenopi and M. avium were subjected to RD9 and 500 bp amplification by PCR. All M. tuberculosis strains, M. tuberculosis H37 Rv and M. canetti yielded a product of 333 bp which showed presence of RD9 region in these strains, whereas all M. bovis yielded a product of 206 bp with RD9 PCR assay. There was no ampli-fication product found in M. bovis BCG, M. xenopi, M. smegmatis, M. phlei, M. chelonae, M. kansasii, and M. avium. PCR based on 500 bp fragment showed a product of 500 bp in all M. bovis strains and M. bovis BCG. There was no amplification product of 500 bp found in M. canetti, M. smegmatis, M. phlei, M. chelonae, M. avium, M. kansasii, M. xenopi and was absent in all M. tuberculosis strains. The PCR assay results correlated 100% with the culture and biochemical results of the isolates. Our study suggested that PCR based on RD9 and 500 bp may effectively identify two closely related species of M. tuberculosis and M. bovis.  相似文献   

16.
Little is known about the intracellular events that occur following the initial inhibition of Mycobacterium tuberculosis by the first-line antituberculosis drugs isoniazid (INH) and ethambutol (EMB). Understanding these pathways should provide significant insights into the adaptive strategies M. tuberculosis undertakes to survive antibiotics. We have discovered that the M. tuberculosis iniA gene (Rv 0342) participates in the development of tolerance to both INH and EMB. This gene is strongly induced along with iniB and iniC (Rv 0341 and Rv 0343) by treatment of Mycobacterium bovis BCG or M. tuberculosis with INH or EMB. BCG strains overexpressing M. tuberculosis iniA grew and survived longer than control strains upon exposure to inhibitory concentrations of either INH or EMB. An M. tuberculosis strain containing an iniA deletion showed increased susceptibility to INH. Additional studies showed that overexpression of M. tuberculosis iniA in BCG conferred resistance to ethidium bromide, and the deletion of iniA in M. tuberculosis resulted in increased accumulation of intracellular ethidium bromide. The pump inhibitor reserpine reversed both tolerance to INH and resistance to ethidium bromide in BCG. These results suggest that iniA functions through an MDR-pump like mechanism, although IniA does not appear to directly transport INH from the cell. Analysis of two-dimensional crystals of the IniA protein revealed that this predicted transmembrane protein forms multimeric structures containing a central pore, providing further evidence that iniA is a pump component. Our studies elucidate a potentially unique adaptive pathway in mycobacteria. Drugs designed to inhibit the iniA gene product may shorten the time required to treat tuberculosis and may help prevent the clinical emergence of drug resistance.  相似文献   

17.
The gene encoding of an alcohol dehydrogenase C (ADHC) from Mycobacterium smegmatis was cloned and sequenced. The protein encoded by this gene has 78% identity with Mycobacterium tuberculosis and Mycobacterium bovis BCG ADHC. The M. smegmatis ADHC was purified from M. smegmatis and the kinetic parameters of this enzyme showed that using NADPH as electron donor it has a strong preference for aliphatic and aromatic aldehyde substrates. Like the M. bovis BCG ADHC, this enzyme is more likely to act as an aldehyde reductase than as an alcohol dehydrogenase. The discovery of such an ADHC in a fast-growing, and easily engineered mycobacterial species opens the way to the utilisation of this M. smegmatis enzyme as a convenient model for the study of the physiological role of this alcohol dehydrogenase in mycobacteria.  相似文献   

18.
Temperature-sensitive mutant 2-20/32 of Mycobacterium smegmatis mc(2)155 was isolated and genetically complemented with a Mycobacterium tuberculosis H37Rv DNA fragment that contained a single open reading frame. This open reading frame is designated Rv3265c in the M. tuberculosis H37Rv genome. Rv3265c shows homology to the Escherichia coli gene wbbL, which encodes a dTDP-Rha:alpha-D-GlcNAc-pyrophosphate polyprenol, alpha-3-L-rhamnosyltransferase. In E. coli this enzyme is involved in O-antigen synthesis, but in mycobacteria it is required for the rhamnosyl-containing linker unit responsible for the attachment of the cell wall polymer mycolyl-arabinogalactan to the peptidoglycan. The M. tuberculosis wbbL homologue, encoded by Rv3265c, was shown to be capable of restoring an E. coli K12 strain containing an insertionally inactivated wbbL to O-antigen positive. Likewise, the E. coli wbbL gene allowed 2-20/32 to grow at higher non-permissive temperatures. The rhamnosyltransferase activity of M. tuberculosis WbbL was demonstrated in 2-20/32 as was the loss of this transferase activity in 2-20/32 at elevated temperatures. The wbbL of the temperature-sensitive mutant contained a single-base change that converted what was a proline in mc(2)155 to a serine residue. Exposure of 2-20/32 to higher non-permissive temperatures resulted in bacteria that could not be recovered at the lower permissive temperatures.  相似文献   

19.
分枝杆菌所致家兔皮肤液化病理模型研究   总被引:1,自引:0,他引:1  
目的 建立卡介苗( BCG) 、H37Ra 和耻垢分枝杆菌感染的新西兰兔皮肤模型, 为肺结核干酪样坏死和继而发生的液化提供研究模型。方法 新西兰兔皮内分别注射BCG、H37Ra 和耻垢分枝杆菌的5 ×106CFU、5 ×104CFU、5 ×102CFU/ml 菌液, 6 周后在病灶周围再次以相同剂量皮内注射,14 d 后病变明显时取材, 制作切片, 行HE 染色, 显微镜下观察。结果新西兰兔分别经皮内接种BCG、H37Ra 或耻垢分枝杆菌后, 高剂量组观察到明显的炎症反应和脓肿液化、破溃等改变。再次免疫可观察到郭霍现象。引起病变的严重程度依次为BCG 强于H37Ra, 后者又强于耻垢分枝杆菌。显微改变可具典型的结核结节样病灶。皮肤模型处取材, 行细菌抗酸染色, 结果阳性。BCG 中、低剂量组再次免疫可诱导小结节样病变, 但不发生液化溃疡, 其余中剂量组及低剂量组没有观察到明显改变。结论 BCG、H37Ra 和耻垢分枝杆菌均可引起皮肤干酪样坏死和液化,病理损伤与感染细菌剂量密切相关, 5 ×106CFU/ml 浓度的分枝杆菌可有效诱导液化和坏死, 其中BCG 引起的病理改变最明显。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号