首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3β and 14-3-3ε, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3ε competes with Go for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3ε sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by G protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with G, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function.  相似文献   

2.
The R7 subfamily of RGS proteins critically regulates neuronal G protein-signaling pathways that are essential for vision, nociception, motor coordination, and reward processing. A member of the R7 RGS family, RGS11, is a GTPase-accelerating protein specifically expressed in retinal ON-bipolar cells where it forms complexes with the atypical G protein β subunit, Gβ5, and transmembrane protein R9AP. Association with R9AP has been shown to be critical for the proteolytic stability of the complex in the retina. In this study we report that R9AP can in addition stimulate the GTPase-accelerating protein activity of the RGS11·Gβ5 complex at Gαo. Single turnover GTPase assays reveal that R9AP co-localizes RGS11·Gβ5 and Gαo on the membrane and allosterically potentiates the GTPase-accelerating function of RGS11·Gβ5. Reconstitution of mGluR6-Gαo signaling in Xenopus oocytes indicates that RGS11·Gβ5-mediated GTPase acceleration in this system requires co-expression of R9AP. The results provide new insight into the regulation of mGluR6-Gαo signaling by the RGS11·Gβ5·R9AP complex and establish R9AP as a general GTPase-accelerating protein activity regulator of R7 RGS complexes.  相似文献   

3.
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) that stimulate the inactivation of heterotrimeric G proteins. We have recently shown that RGS proteins may be regulated on a post-translational level (Benzing, T., Brandes, R., Sellin, L., Schermer, B., Lecker, S., Walz, G., and Kim, E. (1999) Nat. Med. 5, 913-918). However, mechanisms controlling the GAP activity of RGS proteins are poorly understood. Here we show that 14-3-3 proteins associate with RGS7 and RGS3. Binding of 14-3-3 is mediated by a conserved phosphoserine located in the Galpha-interacting portion of the RGS domain; interaction with 14-3-3 inhibits the GAP activity of RGS7, depends upon phosphorylation of a conserved residue within the RGS domain, and results in inhibition of GAP function. Collectively, these data indicate that phosphorylation-dependent binding of 14-3-3 may act as molecular switch that controls the GAP activity keeping a substantial fraction of RGS proteins in a dormant state.  相似文献   

4.
The G protein βγ subunit dimer (Gβγ) and the Gβ5/regulator of G protein signaling (RGS) dimer play fundamental roles in propagating and regulating G protein pathways, respectively. How these complexes form dimers when the individual subunits are unstable is a question that has remained unaddressed for many years. In the case of Gβγ, recent studies have shown that phosducin-like protein 1 (PhLP1) works as a co-chaperone with the cytosolic chaperonin complex (CCT) to fold Gβ and mediate its interaction with Gγ. However, it is not known what fraction of the many Gβγ combinations is assembled this way or whether chaperones influence the specificity of Gβγ dimer formation. Moreover, the mechanism of Gβ5-RGS assembly has yet to be assessed experimentally. The current study was undertaken to directly address these issues. The data show that PhLP1 plays a vital role in the assembly of Gγ2 with all four Gβ1–4 subunits and in the assembly of Gβ2 with all twelve Gγ subunits, without affecting the specificity of the Gβγ interactions. The results also show that Gβ5-RGS7 assembly is dependent on CCT and PhLP1, but the apparent mechanism is different from that of Gβγ. PhLP1 seems to stabilize the interaction of Gβ5 with CCT until Gβ5 is folded, after which it is released to allow Gβ5 to interact with RGS7. These findings point to a general role for PhLP1 in the assembly of all Gβγ combinations and suggest a CCT-dependent mechanism for Gβ5-RGS7 assembly that utilizes the co-chaperone activity of PhLP1 in a unique way.Eukaryotic cells utilize receptors coupled to heterotrimeric GTP-binding proteins (G proteins)3 to mediate a vast array of responses ranging from nutrient-induced migration of single-celled organisms to neurotransmitter-regulated neuronal activity in the human brain (1). Ligand binding to a G protein-coupled receptor (GPCR) initiates GTP exchange on the G protein heterotrimer (composed of Gα, Gβ, and Gγ subunits), which in turn causes the release of Gα-GTP from the Gβγ dimer (24). Both Gα-GTP and Gβγ propagate and amplify the signal by interacting with effector enzymes and ion channels (1, 5). The duration and amplitude of the signal is dictated by receptor phosphorylation coupled with arrestin binding and internalization (6) and by regulators of G protein signaling (RGS) proteins, which serve as GTPase-activating proteins for the GTP-bound Gα subunit (7, 8). The G protein signaling cycle is reset as the inactive Gα-GDP reassembles with the Gβγ dimer and Gαβγ re-associates with the GPCR (5).To fulfill its essential role in signaling, the G protein heterotrimer must be assembled post-translationally from its nascent polypeptides. Significant progress has been made recently regarding the mechanism by which this process occurs. It has been clear for some time that the Gβγ dimer must assemble first, followed by subsequent association of Gα with Gβγ (9). What has not been clear was how Gβγ assembly would occur given the fact that neither Gβ nor Gγ is structurally stable without the other. An important breakthrough was the finding that phosducin-like protein 1 (PhLP1) functions as a co-chaperone with the chaperonin containing tailless complex polypeptide 1 (CCT) in the folding of nascent Gβ and its association with Gγ (1015). CCT is an important chaperone that assists in the folding of actin and tubulin and many other cytosolic proteins, including many β propeller proteins like Gβ (16). PhLP1 has been known for some time to interact with Gβγ and was initially believed to inhibit Gβγ function (17). However, several recent studies have demonstrated that PhLP1 and CCT work together in a highly orchestrated manner to form the Gβγ dimer (1015).Studies on the mechanism of PhLP1-mediated Gβγ assembly have focused on the most common dimer Gβ1γ2 (10, 13, 14), leaving open questions about the role of PhLP1 in the assembly of the other Gβγ combinations. These are important considerations given that humans possess 5 Gβ genes and 12 Gγ genes with some important splice variants (18, 19), resulting in more than 60 possible combinations of Gβγ dimers. Gβ1–4 share between 80 and 90% sequence identity and are broadly expressed (18, 19). Gβ5, the more atypical isoform, shares only ∼53% identity with Gβ1, carries a longer N-terminal domain, and is only expressed in the central nervous system and retina (20). The Gγ protein family is more heterogeneous than the Gβ family. The sequence identity of the 12 Gγ isoforms extends from 10 to 70% (21), and the Gγ family can be separated into 5 subfamilies (2123). All Gγ proteins carry C-terminal isoprenyl modifications, which contribute to their association with the cell membrane, GPCRs, Gαs, and effectors (9). Subfamily I Gγ isoforms are post-translationally farnesylated, whereas all others are geranylgeranylated (22, 24).There is some inherent selectivity in the assembly of different Gβγ combinations, but in general Gβ1–4 can form dimers with most Gγ subunits (25). The physiological purpose of this large number of Gβγ combinations has intrigued researchers in the field for many years, and a large body of research indicates that GPCRs and effectors couple to a preferred subset of Gβγ combinations based somewhat on specific sequence complementarity, but even more so on cellular expression patterns, subcellular localization, and post-translational modifications (18).In contrast to Gβ1–4, Gβ5 does not interact with Gγ subunits in vivo, but it instead forms irreversible dimers with RGS proteins of the R7 family, which includes RGS proteins 6, 7, 9, and 11 (26). All R7 family proteins contain an N-terminal DEP (disheveled, Egl-10, pleckstrin) domain, a central Gγ-like (GGL) domain, and a C-terminal RGS domain (8, 26). The DEP domain interacts with the membrane anchoring/nuclear shuttling R7-binding protein, and the GGL domain binds to Gβ5 in a manner similar to other Gβγ associations (27, 28). Like Gβγs, Gβ5 and R7 RGS proteins form obligate dimers required for their mutual stability (26). Without their partner, Gβ5 and R7 RGS proteins are rapidly degraded in cells (26, 29). Gβ5-R7 RGS complexes act as important GTPase-accelerating proteins for Gi/oα and Gqα subunits in neuronal cells and some immune cells (26).It has been recently shown that all Gβ isoforms are able to interact with the CCT complex, but to varying degrees (15). Gβ4 and Gβ1 bind CCT better than Gβ2 and Gβ3, whereas Gβ5 binds CCT poorly (15). These results suggest that Gβ1 and Gβ4 might be more dependent on PhLP1 than the other Gβs, given the co-chaperone role of PhLP1 with CCT in Gβ1γ2 assembly. However, another report has indicated that Gγ2 assembly with Gβ1 and Gβ2 is more PhLP1-dependent than with Gβ3 and Gβ4 (30). Thus, it is not clear from current information whether PhLP1 and CCT participate in assembly of all Gβγ combinations or whether they contribute to the specificity of Gβγ dimer formation, nor is it clear whether they or other chaperones are involved in Gβ5-R7 RGS dimer formation. This report was designed to address these issues.  相似文献   

5.
6.
Active G protein-coupled receptors activate heterotrimeric Gαβγ proteins by catalyzing the exchange of GDP by GTP at the Gα subunit. A paradoxical attenuation of G protein-activated inwardly rectifying potassium channels (GIRK) upon stimulation of native cells with high concentrations of agonist is known. However, a deactivation of activated G proteins by active receptors has not been experimentally studied in intact cells. We monitored GIRK currents and Go protein activation by means of fluorescence resonance energy transfer (FRET) in parallel. The results suggested that GIRK currents were paradoxically attenuated due to an inactivation of Go proteins by active α2A-adrenergic receptors. To study the mechanisms, G protein activation and receptor-G protein interactions were analyzed as a function of nucleotide type and nucleotide concentrations by means of FRET, while controlling intracellular nucleotides upon permeabilization of the cell membrane. Results suggested a receptor-catalyzed dissociation of GTP from activated heterotrimeric Gαβγ. Consequently, nucleotide-free G proteins were sequestrated in heterotrimeric conformation at the active receptor, thus attenuating downstream signaling in an agonist-dependent manner.  相似文献   

7.
The activation of several G protein-coupled receptors is known to regulate the adhesive properties of cells in different contexts. Here, we reveal that Gβγ subunits of heterotrimeric G proteins regulate cell-matrix adhesiveness by activating Rap1a-dependent inside-out signals and integrin activation. We show that Gβγ subunits enter in a protein complex with activated Rap1a and its effector Radil and establish that this complex is required downstream of receptor stimulation for the activation of integrins and the positive modulation of cell-matrix adhesiveness. Moreover, we demonstrate that Gβγ and activated Rap1a promote the translocation of Radil to the plasma membrane at sites of cell-matrix contacts. These results add to the molecular understanding of how G protein-coupled receptors impinge on cell adhesion and suggest that the Gβγ·Rap1·Radil complex plays important roles in this process.  相似文献   

8.
The transient protein-protein interactions induced by guanine nucleotide-dependent conformational changes of G proteins play central roles in G protein-coupled receptor-mediated signaling systems. Leukemia-associated RhoGEF (LARG), a guanine nucleotide exchange factor for Rho, contains an RGS homology (RH) domain and Dbl homology/pleckstrin homology (DH/PH) domains and acts both as a GTPase-activating protein (GAP) and an effector for Gα13. However, the molecular mechanism of LARG activation upon Gα13 binding is not yet well understood. In this study, we analyzed the Gα13-LARG interaction using cellular and biochemical methods, including a surface plasmon resonance (SPR) analysis. The results obtained using various LARG fragments demonstrated that active Gα13 interacts with LARG through the RH domain, DH/PH domains, and C-terminal region. However, an alanine substitution at the RH domain contact position in Gα13 resulted in a large decrease in affinity. Thermodynamic analysis revealed that binding of Gα13 proceeds with a large negative heat capacity change (ΔCp°), accompanied by a positive entropy change (ΔS°). These results likely indicate that the binding of Gα13 with the RH domain triggers conformational rearrangements between Gα13 and LARG burying an exposed hydrophobic surface to create a large complementary interface, which facilitates complex formation through both GAP and effector interfaces, and activates the RhoGEF. We propose that LARG activation is regulated by an induced-fit mechanism through the GAP interface of Gα13.Heterotrimeric G proteins3 serve as key molecular switches to transduce a large array of extracellular signals into cells by actively alternating their conformations between GDP-bound inactive and GTP-bound active forms. In the current model, the ligand-activated G protein-coupled receptors (GPCRs) catalyze the exchange of GDP for GTP on Gα subunits (1). Upon activation, three switch regions in the Gα subunit undergo significant conformational changes, followed by dissociation of the GTP-bound Gα subunit from the Gβγ subunits. Both Gα-GTP and free Gβγ interact with diverse downstream effectors to transmit intracellular signals. The Gα subunit hydrolyzes bound GTP to GDP by its intrinsic GTPase activity. This deactivation process is further accelerated by GTPase-activating proteins (GAPs) such as regulator of G protein signaling (RGS) proteins (2, 3). Gα-GDP dissociates from effectors and re-associates with Gβγ to terminate the signal.Although this model explains the basic concept of G protein signaling, the molecular dynamics of interactions among GPCR, G protein, RGS protein, and effector during the signaling process is not well understood. It has been suggested that the GPCR signals are integrated into the intracellular signaling network at the level of G proteins (4). Accumulating evidence suggests that the Gα subunit acts as the core of the signaling complex at the membrane, which is formed through the transient protein-protein interactions of multiple signaling components (5, 6). Thus, the quantitative analysis of the dynamic molecular interactions in the GPCR signaling complex will be crucial to understanding various cellular processes.Gα12 and Gα13 subunits have been demonstrated to regulate the activity of Rho GTPase through RhoGEFs, which contain an N-terminal RGS homology domain (RH-RhoGEFs) (710). RH-RhoGEFs, which consist of p115RhoGEF/Lsc, PDZ-Rho-GEF/GTRAP48, and LARG in mammalian species, directly link the activation of GPCRs by extracellular ligands to the regulation of Rho activity in cells (1014). All three RH-RhoGEFs contain an N-terminal RH domain, which specifically recognizes the active form of Gα12 or Gα13 and central DH/PH domains characteristic of GEFs for Rho GTPases. It has been demonstrated in vitro that LARG and p115RhoGEF serve as specific GAPs for Gα12/13 through their RH domains and also as their effectors to regulate Rho GTPase activation (1113). A structural study has demonstrated that the interface of the RH domain of p115RhoGEFs and a Gα13/i1 chimera is different from that of the RGS domain of RGS4 and Gαi1 (7). The N-terminal small element in the RH domain, which is required for GAP activity toward Gα13, contacts the switch regions and the helical domain of the Gα13/i1 chimera. The core module of the p115RhoGEF RH domain binds to the region of Gα13/i1, which is conventionally used for effector binding. These results suggest roles for the RH domain in the stimulation of GEF activity by Gα13 in addition to GAP activity. On the other hand, several studies have also indicated that regions outside of RH domain of RH-RhoGEFs, particularly the DH/PH domains, interact directly with activated Gα13 (11, 14, 15). In addition, we have demonstrated recently that p115RhoGEF interacts with distinct surfaces of Gα13 for the GAP reaction or GEF activity regulation (16). However, the molecular mechanism of LARG activation upon Gα13 binding is not clearly understood.In this study, we have developed a quantitative method for the kinetic and thermodynamic analysis of Gα13-effector interaction using surface plasmon resonance (SPR) with sensor chips on which Gα13 was immobilized. We examined the kinetics and thermodynamics of the Gα13-LARG interaction and assessed LARG activation using both in vitro and cell-based approaches. We present evidence that, in addition to the interaction with the RH domain, the DH/PH domains and C-terminal region of LARG also interact with Gα13 to form the high affinity Gα13-LARG complex and activate RhoGEF activity. We further propose that LARG adopts the active conformation using an induced-fit mechanism through association with the GAP interface of Gα13. A similar mechanism may also be used with other Gα-effector interactions.  相似文献   

9.
“Regulator of G-protein signaling” (RGS) proteins facilitate the termination of G protein-coupled receptor (GPCR) signaling via their ability to increase the intrinsic GTP hydrolysis rate of Gα subunits (known as GTPase-accelerating protein or “GAP” activity). RGS2 is unique in its in vitro potency and selectivity as a GAP for Gαq subunits. As many vasoconstrictive hormones signal via Gq heterotrimer-coupled receptors, it is perhaps not surprising that RGS2-deficient mice exhibit constitutive hypertension. However, to date the particular structural features within RGS2 determining its selectivity for Gαq over Gαi/o substrates have not been completely characterized. Here, we examine a trio of point mutations to RGS2 that elicits Gαi-directed binding and GAP activities without perturbing its association with Gαq. Using x-ray crystallography, we determined a model of the triple mutant RGS2 in complex with a transition state mimetic form of Gαi at 2.8-Å resolution. Structural comparison with unliganded, wild type RGS2 and of other RGS domain/Gα complexes highlighted the roles of these residues in wild type RGS2 that weaken Gαi subunit association. Moreover, these three amino acids are seen to be evolutionarily conserved among organisms with modern cardiovascular systems, suggesting that RGS2 arose from the R4-subfamily of RGS proteins to have specialized activity as a potent and selective Gαq GAP that modulates cardiovascular function.G protein-coupled receptors (GPCRs)4 form an interface between extracellular and intracellular physiology, as they convert hormonal signals into changes in intracellular metabolism and ultimately cell phenotype and function (13). GPCRs are coupled to their underlying second messenger systems by heterotrimeric guanine nucleotide-binding protein (“G-proteins”) composed of three subunits: Gα, Gβ, and Gγ. Four general classes of Gα subunits have been defined based on functional couplings (in the GTP-bound state) to various effector proteins. Gs subfamily Gα subunits are stimulatory to membrane-bound adenylyl cyclases that generate the second messenger 3′,5′-cyclic adenosine monophosphate (cAMP); conversely, Gi subfamily Gα subunits are generally inhibitory to adenylyl cyclases (4). G12/13 subfamily Gα subunits activate the small G-protein RhoA through stimulation of the GEF subfamily of RGS proteins, namely p115-RhoGEF, LARG, and PDZ-RhoGEF (5). Gq subfamily Gα subunits are potent activators of phospholipase-Cβ enzymes that generate the second messengers diacylglycerol and inositol triphosphate (6); more recently, two additional Gαq effector proteins have been described: the receptor kinase GRK2 and the RhoA nucleotide exchange factor p63RhoGEF (7, 8).The duration of GPCR signaling is controlled by the time Gα remains bound to GTP before its hydrolysis to GDP. RGS proteins are key modulators of GPCR signaling by virtue of their ability to accelerate the intrinsic GTP hydrolysis activity of Gα subunits (reviewed in Refs. 9 and 10). RGS2/G0S8, one of the first mammalian RGS proteins identified (11) and member of the R4-subfamily (10), has a critical role in the maintenance of normostatic blood pressure both in mouse models (12, 13) and in humans (14, 15); additionally, Rgs2-deficient mice exhibit impaired aggression and increased anxiety (16, 17), behavioral phenotypes with potential human clinical correlates (18, 19).Although many RGS proteins are promiscuous and thus act on multiple Gα substrates in vitro (e.g. Ref. 20), RGS2 exhibits exquisite specificity for Gαq in biochemical binding assays and single turnover GTPase acceleration assays (20, 21). Consistent with this in vitro selectivity,5 mice deficient in RGS2 uniquely exhibit constitutive hypertension and prolonged responses to vasoconstrictors, as would be expected upon loss of a potent negative regulator of Gαq that mediates signaling from various vasoconstrictive hormones such as angiotensin II, endothelin, thrombin, norepinephrine, and vasopressin (22). In addition, RGS2-deficient mice respond to sustained pressure overload with an accelerated time course of maladaptive cardiac remodeling (23), a pathophysiological response that evokes myocardial hypertrophy known to be critically dependent on Gαq signaling (24, 25).To gain insight into the structural basis of the unique Gα substrate selectivity exhibited by RGS2, a series of point mutants in RGS2 were evaluated that enable this protein to bind and accelerate GTP hydrolysis by Gαi; we subsequently delineated the structural determinants of the Gαi/mutant RGS2 interaction using x-ray crystallography. Three key positions, first identified by Heximer and colleagues (21) and highlighted in our structural studies as key determinants of RGS2 substrate selection, were also found to be conserved throughout the evolution of the RGS2 protein in a manner suggestive of specialization toward cardiovascular signaling modulation.  相似文献   

10.
The protein G18 (also known as AGS4 or GPSM3) contains three conserved GoLoco/GPR domains in its central and C-terminal regions that bind to inactive Gαi, whereas the N-terminal region has not been previously characterized. We investigated whether this domain might itself regulate G protein activity by assessing the abilities of G18 and mutants thereof to modulate the nucleotide binding and hydrolytic properties of Gαi1 and Gαo. Surprisingly, in the presence of fluoroaluminate (AlF4) both G proteins bound strongly to full-length G18 (G18wt) and to its isolated N-terminal domain (G18ΔC) but not to its GoLoco region (ΔNG18). Thus, it appears that its N-terminal domain promotes G18 binding to fluoroaluminate-activated Gαi/o. Neither G18wt nor any G18 mutant affected the GTPase activity of Gαi1 or Gαo. In contrast, complex effects were noted with respect to nucleotide binding. As inferred by the binding of [35S]GTPγS (guanosine 5′-O-[γ-thio]triphosphate) to Gαi1, the isolated GoLoco region as expected acted as a guanine nucleotide dissociation inhibitor, whereas the N-terminal region exhibited a previously unknown guanine nucleotide exchange factor effect on this G protein. On the other hand, the N terminus inhibited [35S]GTPγS binding to Gαo, albeit to a lesser extent than the effect of the GoLoco region on Gαi1. Taken together, our results identify the N-terminal region of G18 as a novel G protein-interacting domain that may have distinct regulatory effects within the Gi/o subfamily, and thus, it could potentially play a role in differentiating signals between these related G proteins.  相似文献   

11.
Regulators of G protein signaling (RGS) constitute a family of proteins with a conserved RGS domain of approximately 120 amino acids that accelerate the intrinsic GTP hydrolysis of activated Galpha(i) and Galpha(q) subunits. The phosphorylation-dependent interaction of 14-3-3 proteins with a subset of RGS proteins inhibits their GTPase-accelerating activity in vitro. The inhibitory interaction between 14-3-3 and RGS7 requires phosphorylation of serine 434 of RGS7. We now show that phosphorylation of serine 434 is dynamically regulated by TNF-alpha. Cellular stimulation by TNF-alpha transiently decreased the phosphorylation of serine 434 of RGS7, abrogating the inhibitory interaction with 14-3-3. We examined the effect of 14-3-3 on RGS-mediated deactivation kinetics of G protein-coupled inwardly rectifying K(+) channels (GIRKs) in Xenopus oocytes. 14-3-3 inhibited the function of wild-type RGS7, but not that of either RSG7(P436R) or RGS4, two proteins that do not bind 14-3-3. Our findings are the first evidence that extracellular signals can modulate the activity of RGS proteins by regulating their interaction with 14-3-3.  相似文献   

12.
Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates heterotrimeric G protein and H-Ras signaling pathways. RGS14 possesses an RGS domain that binds active Gαi/o-GTP subunits to promote GTP hydrolysis and a G protein regulatory (GPR) motif that selectively binds inactive Gαi1/3-GDP subunits to form a stable heterodimer at cellular membranes. RGS14 also contains two tandem Ras/Rap binding domains (RBDs) that bind H-Ras. Here we show that RGS14 preferentially binds activated H-Ras-GTP in live cells to enhance H-Ras cellular actions and that this interaction is regulated by inactive Gαi1-GDP and G protein-coupled receptors (GPCRs). Using bioluminescence resonance energy transfer (BRET) in live cells, we show that RGS14-Luciferase and active H-Ras(G/V)-Venus exhibit a robust BRET signal at the plasma membrane that is markedly enhanced in the presence of inactive Gαi1-GDP but not active Gαi1-GTP. Active H-Ras(G/V) interacts with a native RGS14·Gαi1 complex in brain lysates, and co-expression of RGS14 and Gαi1 in PC12 cells greatly enhances H-Ras(G/V) stimulatory effects on neurite outgrowth. Stimulation of the Gαi-linked α2A-adrenergic receptor induces a conformational change in the Gαi1·RGS14·H-Ras(G/V) complex that may allow subsequent regulation of the complex by other binding partners. Together, these findings indicate that inactive Gαi1-GDP enhances the affinity of RGS14 for H-Ras-GTP in live cells, resulting in a ternary signaling complex that is further regulated by GPCRs.  相似文献   

13.
Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gαi1(G42R) binding to GDP·AlF4 or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gαq(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.  相似文献   

14.
It is well known that Gαi1(GDP) binds strongly to Gβγ subunits to form the Gαi1(GDP)-Gβγ heterotrimer, and that activation to Gαi1(GTP) results in conformational changes that reduces its affinity for Gβγ subunits. Previous studies of G protein subunit interactions have used stoichiometric amounts of the proteins. Here, we have found that Gαi1(GDP) can bind a second Gβγ subunit with an affinity only 10-fold weaker than the primary site and close to the affinity between activated Gαi1 and Gβγ subunits. Also, we find that phospholipase Cβ2, an effector of Gβγ, does not compete with the second binding site implying that effectors can be bound to the Gαi1(GDP)-(Gβγ)2 complex. Biophysical measurements and molecular docking studies suggest that this second site is distant from the primary one. A synthetic peptide having a sequence identical to the putative second binding site on Gαi1 competes with binding of the second Gβγ subunit. Injection of this peptide into cultured cells expressing eYFP-Gαi1(GDP) and eCFP-Gβγ reduces the overall association of the subunits suggesting this site is operative in cells. We propose that this second binding site serves to promote and stabilize G protein subunit interactions in the presence of competing cellular proteins.The plasma membranes of cells are organized as a series of protein-rich and lipid-rich domains (13). Many of the protein-rich domains, in particular those organized by caveolin proteins, are thought to be complexes of functionally related proteins that transduce extracellular signals (2). There is increasing evidence that heterotrimeric G proteins exist in pre-formed membrane complexes with their receptors and their intracellular effectors (48).The G protein signaling system is initiated when an extracellular agonist binds to its specific G protein-coupled receptor (for review see Refs. 912). The ligand-bound receptor will then catalyze the exchange of GTP for GDP on the Gα subunit in the G protein heterotrimer. In the basal state, Gα(GDP) binds strongly to Gβγ, but in the GTP-bound state this affinity is reduced, allowing Gα(GTP) and Gβγ subunits to individually bind to a host of specific intracellular enzymes and change their catalytic activity.Although the interactions between G protein subunits have been studied extensively in vitro, their behavior in cells may differ. For example, in pure or semi-pure systems, activation of Gα(GDP) sufficiently weakens its affinity for Gβγ resulting in dissociation (13). However, in cells separation of the heterotrimer is observed under some circumstances, but not others (7, 1417). The reason for these differences in behavior is not clear. There are four families of Gα subunits that each contain several members, and, additionally, there are many subtypes of Gβγ subunits (18). It is possible that differences in dissociation behavior reflect differences in affinity between G protein subunit subtypes (19), the presence of various protein partners, and/or differences in post-synthetic modifications of the subunits (20).The mechanism that allows activated G proteins to remain bound is not apparent from the crystal structure (21, 22). If G protein subunits do not dissociate in cells, then their interaction must change in such a manner as to expose the effector interaction site(s). We have found that phospholipase Cβ1 (PLCβ1),4 an important effector of Gαq (23), is bound to Gαq prior to activation and throughout the activation cycle (6) implying that Gαq(GDP) interacts with PLCβ1 in a non-functional manner.We have evidence that signaling complexes are stabilized by a series of secondary interactions. Using purified proteins and model membranes, we have found that membranes of the Gαq-Gβγ/PLCβ1/RGS4 signaling system have secondary, weaker binding sites to members of this signaling system in addition to their high affinity site(s) to their functional partner(s). We speculate that secondary contacts allow for self-scaffolding of signaling proteins. To understand the nature of these secondary contacts, we have studied the ability of the Gαi1(GDP)-Gβγ heterotrimer to remain complexed through the activation cycle (24). Here, we present evidence that Gαi1(GDP) has two distinct Gβγ binding sites that only differ in affinity by an order of magnitude and may allow for continued association between the subunits upon activation. We also find that this site plays an important role in stabilizing G protein associations in cells and provides a mechanism of self-scaffolding.  相似文献   

15.
Regulator of G-protein signaling (RGS) proteins are a family of molecules that control the duration of G protein signaling. A variety of RGS proteins have been reported to modulate opioid receptor signaling. Here we show that RGS4 is abundantly expressed in human neuroblastoma SH-SY5Y cells that endogenously express μ- and δ-opioid receptors and test the hypothesis that the activity of opioids in these cells is modulated by RGS4. Endogenous RGS4 protein was reduced by ∼90% in SH-SY5Y cells stably expressing short hairpin RNA specifically targeted to RGS4. In these cells, the potency and maximal effect of δ-opioid receptor agonist (SNC80)-mediated inhibition of forskolin-stimulated cAMP accumulation was increased compared with control cells. This effect was reversed by transient transfection of a stable RGS4 mutant (HA-RGS4C2S). Furthermore, MAPK activation by SNC80 was increased in cells with knockdown of RGS4. In contrast, there was no change in the μ-opioid (morphine) response at adenylyl cyclase or MAPK. FLAG-tagged opioid receptors and HA-RGS4C2S were transiently expressed in HEK293T cells, and co-immunoprecipitation experiments showed that the δ-opioid receptor but not the μ-opioid receptor could be precipitated together with the stable RGS4. Using chimeras of the δ- and μ-opioid receptors, the C-tail and third intracellular domain of the δ-opioid receptor were suggested to be the sites of interaction with RGS4. The findings demonstrate a role for endogenous RGS4 protein in modulating δ-opioid receptor signaling in SH-SY5Y cells and provide evidence for a receptor-specific effect of RGS4.μ- and δ-opioid receptors are members of the G protein-coupled receptor family and interact with Gαi/o proteins (1, 2). This results in signaling to a variety of downstream effectors, including adenylyl cyclase and the mitogen-activated protein kinase (MAPK)2 cascade. Signaling of opioid receptors is regulated negatively by regulator of G protein signaling (RGS) proteins (3, 4). These are a family of molecules containing a “RGS consensus” domain that bind to Gα subunits and act as GTPase-accelerating proteins to increase the rate of GTP hydrolysis. This results in a decrease in the lifetime of the active Gα-GTP and free Gβγ subunits and limits signaling to downstream effectors (58). The mechanisms by which RGS proteins selectively modulate G protein-mediated receptor signal transduction pathways, especially opioid receptor signaling, are beginning to unfold (912). The foundation for the function and selectivity of RGS proteins in regulating opioid signaling lies in their ability to interact with opioid receptors and their cognate G proteins. In general, the selectivity or the preference of an RGS protein for a particular receptor is determined by a variety of factors, including tissue-specific expression and precise interaction with the intracellular domains of receptor proteins, G protein subunits, and effectors as well as other pathway-specific components (13).The effects of RGS proteins on opioid receptor signaling have been examined in several systems. The findings are not always consistent, probably due to the different methodologies used. It has been shown that members of the RZ, R4, and R7 subfamilies (7) of RGS proteins play crucial roles not only in terminating acute opioid agonist action but also in opioid receptor desensitization, internalization, recycling, and degradation (3, 14), thereby affecting opioid tolerance and dependence (1518). Much work has been performed with RGS4, because it is a smaller RGS protein with a structure consisting of the RGS consensus (box) sequence and a small N terminus (19, 20). It also has a wide distribution in the brain, especially in brain regions important for opioid actions, including the striatum, locus coeruleus, dorsal horn of the spinal cord, and cerebral cortex (21). In vitro RGS4 has been shown to reverse δ-opioid receptor agonist-induced inhibition of cAMP synthesis in membranes prepared from NG108-15 cells (6). Overexpression of RGS4 in HEK293 cells also attenuated morphine-, [d-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO)-, and [d-Pen2,d-Pen5]enkephalin (DPDPE)-induced inhibition of adenylyl cyclase (22, 23). Co-expression of RGS4 with GIRK1/GIRK2 channels in Xenopus oocytes reduced the basal K+ current and accelerated the deactivation of GIRK channels activated by κ-opioid receptor agonist U69593 (24). Although these previous studies have provided evidence that RGS4 can negatively regulate opioid receptor signaling, they do not confirm a functional role for endogenous RGS4 in endogenous, nontransfected systems.Human neuroblastoma SH-SY5Y cells endogenously express μ- and δ-opioid receptors and a variety of Gαi/o proteins (2527). Here we show that RGS4 is abundantly found at both the mRNA and protein levels in these cells. Consequently, we used SH-SY5Y cells to examine the hypothesis that RGS4 negatively modulates opioid receptor signaling under physiological conditions. The endogenously expressed RGS4 level in SH-SY5Y cells was reduced using lentiviral delivery of short hairpin RNA (shRNA) targeting the RGS4 gene. This resulted in changes in δ- but not μ-opioid receptor-mediated signaling to adenylyl cyclase and the MAPK pathway. These findings argue for a selective interaction of RGS4 with the δ-opioid receptor. To test this, we expressed FLAG-tagged μ- and δ-opioid receptors together with a construct for a stable, proteosome-resistant RGS4 protein in HEK293T cells. Co-immunoprecipitation indicated that the δ-opioid but not the μ-opioid receptor was closely associated with RGS4, providing further evidence for a selective interaction between RGS4 and δ-opioid receptor signaling.  相似文献   

16.
Regulators of G protein signaling (RGS) proteins bind to the α subunits of certain heterotrimeric G proteins and greatly enhance their rate of GTP hydrolysis, thereby determining the time course of interactions among Gα, Gβγ, and their effectors. Voltage-gated N-type Ca channels mediate neurosecretion, and these Ca channels are powerfully inhibited by G proteins. To determine whether RGS proteins could influence Ca channel function, we recorded the activity of N-type Ca channels coexpressed in human embryonic kidney (HEK293) cells with G protein–coupled muscarinic (m2) receptors and various RGS proteins. Coexpression of full-length RGS3T, RGS3, or RGS8 significantly attenuated the magnitude of receptor-mediated Ca channel inhibition. In control cells expressing α1B, α2, and β3 Ca channel subunits and m2 receptors, carbachol (1 μM) inhibited whole-cell currents by ∼80% compared with only ∼55% inhibition in cells also expressing exogenous RGS protein. A similar effect was produced by expression of the conserved core domain of RGS8. The attenuation of Ca current inhibition resulted primarily from a shift in the steady state dose–response relationship to higher agonist concentrations, with the EC50 for carbachol inhibition being ∼18 nM in control cells vs. ∼150 nM in RGS-expressing cells. The kinetics of Ca channel inhibition were also modified by RGS. Thus, in cells expressing RGS3T, the decay of prepulse facilitation was slower, and recovery of Ca channels from inhibition after agonist removal was faster than in control cells. The effects of RGS proteins on Ca channel modulation can be explained by their ability to act as GTPase-accelerating proteins for some Gα subunits. These results suggest that RGS proteins may play important roles in shaping the magnitude and kinetics of physiological events, such as neurosecretion, that involve G protein–modulated Ca channels.  相似文献   

17.

Background

Ocular albinism type 1, an X-linked disease characterized by the presence of enlarged melanosomes in the retinal pigment epithelium (RPE) and abnormal crossing of axons at the optic chiasm, is caused by mutations in the OA1 gene. The protein product of this gene is a G-protein-coupled receptor (GPCR) localized in RPE melanosomes. The Oa1-/- mouse model of ocular albinism reproduces the human disease. Oa1 has been shown to immunoprecipitate with the Gαi subunit of heterotrimeric G proteins from human skin melanocytes. However, the Gαi subfamily has three highly homologous members, Gαi1, Gαi2 and Gαi3 and it is possible that one or more of them partners with Oa1. We had previously shown by in-vivo studies that Gαi3-/- and Oa1-/- mice have similar RPE phenotype and decussation patterns. In this paper we analyze the specificity of the Oa1-Gαi interaction.

Methodology

By using the genetic mouse models Gαi1-/-, Gαi2-/-, Gαi3-/- and the double knockout Gαi1-/-, Gαi3-/- that lack functional Gαi1, Gαi2, Gαi3, or both Gαi1 and Gαi3 proteins, respectively, we show that Gαi3 is critical for the maintenance of a normal melanosomal phenotype and that its absence is associated with changes in melanosomal size and density. GST-pull-down and immunoprecipitation assays conclusively demonstrate that Gαi3 is the only Gαi that binds to Oa1. Western blots show that Gαi3 expression is barely detectable in the Oa1-/- RPE, strongly supporting a previously unsuspected role for Gαi3 in melanosomal biogenesis.

Conclusion

Our results identify the Oa1 transducer Gαi3 as the first downstream component in the Oa1 signaling pathway.  相似文献   

18.
Members of the conserved 14-3-3 protein family spontaneously self-assemble as homo- and heterodimers via conserved sequences in the first four (αA-αD) of the nine helices that comprise them. Dimeric 14-3-3s bind conserved motifs in diverse protein targets involved in multiple essential cellular processes including signaling, intracellular trafficking, cell cycle regulation, and modulation of enzymatic activities. However, recent mostly in vitro evidence has emerged, suggesting functional and regulatory roles for monomeric 14-3-3s. We capitalized on the simplicity of the 14-3-3 family in Drosophila to investigate in vivo 14-3-3ζ monomer properties and functionality. We report that dimerization is essential for the stability and function of 14-3-3ζ in neurons. Moreover, we reveal the contribution of conserved amino acids in helices A and D to homo- and heterodimerization and their functional consequences on the viability of animals devoid of endogenous 14-3-3ζ. Finally, we present evidence suggesting endogenous homeostatic adjustment of the levels of the second family member in Drosophila, D14-3-3ϵ, to transgenic monomeric and dimerization-competent 14-3-3ζ.  相似文献   

19.
Stable complexes among G proteins and effectors are an emerging concept in cell signaling. The prototypical Gβγ effector G protein-activated K+ channel (GIRK; Kir3) physically interacts with Gβγ but also with Gαi/o. Whether and how Gαi/o subunits regulate GIRK in vivo is unclear. We studied triple interactions among GIRK subunits 1 and 2, Gαi3 and Gβγ. We used in vitro protein interaction assays and in vivo intramolecular Förster resonance energy transfer (i-FRET) between fluorophores attached to N and C termini of either GIRK1 or GIRK2 subunit. We demonstrate, for the first time, that Gβγ and Gαi3 distinctly and interdependently alter the conformational states of the heterotetrameric GIRK1/2 channel. Biochemical experiments show that Gβγ greatly enhances the binding of GIRK1 subunit to Gαi3GDP and, unexpectedly, to Gαi3GTP. i-FRET showed that both Gαi3 and Gβγ induced distinct conformational changes in GIRK1 and GIRK2. Moreover, GIRK1 and GIRK2 subunits assumed unique, distinct conformations when coexpressed with a “constitutively active” Gαi3 mutant and Gβγ together. These conformations differ from those assumed by GIRK1 or GIRK2 after separate coexpression of either Gαi3 or Gβγ. Both biochemical and i-FRET data suggest that GIRK acts as the nucleator of the GIRK-Gα-Gβγ signaling complex and mediates allosteric interactions between GαiGTP and Gβγ. Our findings imply that Gαi/o and the Gαiβγ heterotrimer can regulate a Gβγ effector both before and after activation by neurotransmitters.  相似文献   

20.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines, is activated by phosphorylation-dependent binding to 14-3-3 proteins. The N-terminal domain of TH is also involved in interaction with lipid membranes. We investigated the binding of the N-terminal domain to its different partners, both in the unphosphorylated (TH-(1–43)) and Ser19-phosphorylated (THp-(1–43)) states by surface plasmon resonance. THp-(1–43) showed high affinity for 14-3-3 proteins (Kd ∼ 0.5 μm for 14-3-3γ and -ζ and 7 μm for 14-3-3η). The domains also bind to negatively charged membranes with intermediate affinity (concentration at half-maximal binding S0.5 = 25–58 μm (TH-(1–43)) and S0.5 = 135–475 μm (THp-(1–43)), depending on phospholipid composition) and concomitant formation of helical structure. 14-3-3γ showed a preferential binding to membranes, compared with 14-3-3ζ, both in chromaffin granules and with liposomes at neutral pH. The affinity of 14-3-3γ for negatively charged membranes (S0.5 = 1–9 μm) is much higher than the affinity of TH for the same membranes, compatible with the formation of a ternary complex between Ser19-phosphorylated TH, 14-3-3γ, and membranes. Our results shed light on interaction mechanisms that might be relevant for the modulation of the distribution of TH in the cytoplasm and membrane fractions and regulation of l-DOPA and dopamine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号