首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dissociation of ribosomes at high temperatures   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
Halophyte seed germination   总被引:3,自引:0,他引:3  
  相似文献   

6.
7.
8.
Exposure of yeast 80 S ribosomes to chaotropic salts such as NaClO4 or NaSCN at concentrations as low as 0.4 M resulted in complete dissociation and subsequent aggregation of the ribosomal proteins. However, under similar conditions, both NaCl and NaBr did not cause dissociation and aggregation. The protein precipitate obtained by exposing the ribosomes to 0.5 M NaClO4 was free of any rRNA contamination as judged by ultraviolet-absorption analysis. Comparison of the two-dimensional polyacrylamide gel electrophoretic analysis of the above ribosomal protein precipitate with that ribosomal proteins isolated by the standard acetic acid extraction procedure revealed that the protein precipitate contained all the ribosomal proteins. Based on these results, a simple method for the isolation of total ribosomal proteins and rRNA under mild, nondenaturing conditions is proposed. A possible mechanism for the dissociation of proteins from the ribosome by chaotropic salts is also discussed.  相似文献   

9.
10.
11.
12.
Seed germination of many plant species is influenced by light. Of the various photoreceptor systems, phytochrome plays an especially important role in seed germination. The existence of at least five phytochrome genes has led to the proposal that different members of the family have different roles in the photoregulation of seed germination. Physiological analysis of seed germination ofArabidopsis thaliana (L.) Heynh. with phytochrome-deficient mutants showed for the first time that phytochrome A and phytochrome B modulate the timing of seed germination in distinct actions. Phytochrome A photo-irreversibly triggers the photoinduction of seed germination after irradiation with extremely low fluence light in a wide range of wavelengths, from UV-A, to visible, to far-red. In contrast, phytochrome B mediates the well-characterized photoreversible reaction, responding to red and far-red light of fluences four orders of magnitude higher than those to which PhyA responds. Wild plants, such asA. thaliana, survive under ground as dormant seeds for long periods, and the timing of seed germination is crucial for optimizing growth and reproduction. It therefore seems reasonable for plants to possess at least two different physiological systems for sensing the light environment over a wide spectral range with exquisite sensitivity of different phytochromes. This redundancy seems to enhance plant survival in a fluctuating environment.  相似文献   

13.
种子萌发的抑制调控机制   总被引:1,自引:0,他引:1  
种子萌发是植物生命周期中一个重要的生理过程,激素作用、miRNA抑制、mRNA区域化、表观遗传调控等多个层次的分子抑制参与该过程的调控。赤霉素(解除抑制的激素)合成和失活的调控主要发生在转录水平,而脱落酸(引起抑制的激素)信号转导途径的调控则通过蛋白质抑制物的降解来实现。miRNA在转录后水平使其靶基因的mRNA降解,抑制种子的萌发;通过mRNA的区域化抑制与萌发相关基因的翻译属于另一层次的转录后抑制;小RNA介导的表观遗传机制也可能在种子萌发过程基因表达的协同调控中发挥重要作用。与分子水平的抑制类似,胚乳和种皮产生的机械抑制也很重要。  相似文献   

14.
Reactive oxygen species and seed germination   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS) are continuously produced by the metabolically active cells of seeds, and apparently play important roles in biological processes such as germination and dormancy. Germination and ROS accumulation appear to be linked, and seed germination success may be closely associated with internal ROS contents and the activities of ROS-scavenging systems. Although ROS were long considered hazardous molecules, their functions as cell signaling compounds are now well established and widely studied in plants. In seeds, ROS have important roles in endosperm weakening, the mobilization of seed reserves, protection against pathogens, and programmed cell death. ROS may also function as messengers or transmitters of environmental cues during seed germination. Little is currently known, however, about ROS biochemistry or their functions or the signaling pathways during these processes, which are to be considered in the present review.  相似文献   

15.
Dissociation of Escherichia coli ribosomes. Role of initiation factors   总被引:1,自引:0,他引:1  
S H Miall  T Tamaoki 《Biochemistry》1972,11(25):4826-4830
  相似文献   

16.
17.
Ethylene in seed dormancy and germination   总被引:17,自引:0,他引:17  
The role of ethylene in the release of primary and secondary dormancy and the germination of non-dormant seeds under normal and stressed conditions is considered. In many species, exogenous ethylene, or ethephon – an ethylene-releasing compound - stimulates seed germination that may be inhibited because of embryo or coat dormancy, adverse environmental conditions or inhibitors (e.g. abscisic acid, jasmonate). Ethylene can either act alone, or synergistically or additively with other factors. The immediate precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC), may also improve seed germination, but usually less effectively. Dormant or non-dormant inhibited seeds have a lower ethylene production ability, and ACC and ACC oxidase activity than non-dormant, uninhibited seeds. Aminoethoxyvinyl-glycine (AVG) partially or markedly inhibits ethylene biosynthesis in dormant or non-dormant seeds, but does not affect seed germination. Ethylene binding is required in seeds of many species for dormancy release or germination under optimal or adverse conditions. There are examples where induction of seed germination by some stimulators requires ethylene action. However, the mechanism of ethylene action is almost unknown.
The evidence presented here shows that ethylene performs a relatively vital role in dormancy release and seed germination of most plant species studied.  相似文献   

18.
19.
20.
Dissociation of eukaryotic ribosomes by purified initiation factor EIF-3   总被引:1,自引:0,他引:1  
Purified eukaryotic initiation factor, EIF-3, prepared from ascites cells dissociated rat liver 80S ribosomes into subunits. Ribosomes bearing endogenous mRNA and nascent peptide were not dissociated by EIF-3. When 80S ribosomes reconstituted from subunits were used as substrate the reaction had the following characteristics: Dissociation was rapid--the reaction being completed within 2 min at 30°. The extent of dissociation was directly proportional to the amount of EIF-3; with 21 μg of EIF-3 about 70% (or 10.5 μg) of the 80S monomers were dissociated. The dissociation of 80S monomers by EIF-3 decreased with increasing concentrations of magnesium. The reaction was not catalytic: 28 moles of EIF-3 were required to dissociate 1 mole of 80S ribosomes. The characteristic of the dissociation reaction promoted by EIF-3 and by E. coli initiation factor IF-3 are remarkably similar. The dissociation reaction provides a practical assay for EIF-3 independent of complimentation of other initiating factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号