首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotide primers derived from sequences of the 16S rRNA gene (CMR16F1, CMR16R1, CMR16F2, and CMR16R2) and insertion element IS1121 of Clavibacter michiganensis subsp. sepedonicus (CMSIF1, CMSIR1, CMSIF2, and CMISR2) were used in nested PCR to detect the potato ring rot bacterium C. michiganensis subsp. sepedonicus. Nested PCR with primer pair CMSIF1-CMSIR1 followed by primer pair CMSIF2-CMSIR2 specifically detected C. michiganensis subsp. sepedonicus, while nested PCR with CMR16F1-CMR16R1 followed by CMR16F2-CMR16R2 detected C. michiganensis subsp. sepedonicus and the other C. michiganensis subspecies. In the latter case, C. michiganensis subsp. sepedonicus can be differentiated from the other subspecies by restriction fragment length polymorphism (RFLP) analyses of the nested PCR products (16S rDNA sequences). The nested PCR assays developed in this work allow ultrasensitive detection of very low titers of C. michiganensis subsp. sepedonicus which may be present in symptomiess potato plants or tubers and which cannot be readily detected by direct PCR (single PCR amplification). RFLP analysis of PCR products provides for an unambiguous confirmation of the identify of C. michiganensis subsp. sepedonicus.  相似文献   

2.
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis is the causal agent of canker disease in tomato. Because it is very important to control newly introduced inoculum sources from commercial materials, the specific detection of this pathogen in seeds and seedlings is essential for effective disease control. In this study, a novel and efficient assay for the detection and quantitation of C. michiganensis subsp. michiganensis in symptomless tomato and red pepper seeds was developed. A pair of polymerase chain reaction (PCR) primers (Cmm141F/R) was designed to amplify a specific 141 bp fragment on the basis of a ferredoxin reductase gene of C. michiganensis subsp. michiganensis NCPPB 382. The specificity of the primer set was evaluated using purified DNA from 16 isolates of five C. michiganensis subspecies, one other Clavibacter species, and 17 other reference bacteria. The primer set amplified a single band of expected size from the genomic DNA obtained from the C. michiganensis subsp. michiganensis strains but not from the other C. michiganensis subspecies or from other Clavibacter species. The detection limit was a single cloned copy of the ferredoxin reductase gene of C. michiganensis subsp. michiganensis. In conclusion, this quantitative direct PCR assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of seeds and seedlings with a low level or latent infection of C. michiganensis subsp. michiganensis.  相似文献   

3.
A transposon mutagenesis system for Clavibacter michiganensis subsp. michiganensis was developed based on antibiotic resistance transposons that were derived from the insertion element IS1409 from Arthrobacter sp. strain TM1 NCIB12013. As a prerequisite, the electroporation efficiency was optimized by using unmethylated DNA and treatment of the cells with glycine such that about 5 x 10(6) transformants per microg of DNA were generally obtained. Electroporation of C. michiganensis subsp. michiganensis with a suicide vector carrying transposon Tn1409C resulted in approximately 1 x 10(3) transposon mutants per pg of DNA and thus is suitable for saturation mutagenesis. Analysis of Tn1409C insertion sites suggests a random mode of transposition. Transposition of Tn1409C was also demonstrated for other subspecies of C. michiganensis.  相似文献   

4.
Phenotypic differentiation between Campylobacter fetus (C. fetus) subspecies fetus and C. fetus subspecies venerealis is hampered by poor reliability and reproducibility of biochemical assays. AFLP (amplified fragment length polymorphism) and MLST (multilocus sequence typing) are the molecular standards for C. fetus subspecies identification, but these methods are laborious and expensive. Several PCR assays for C. fetus subspecies identification have been described, but a reliable comparison of these assays is lacking.  相似文献   

5.
Campylobacter fetus is divided into CFV and CFF. Because CFV causes bovine genital campylobacteriosis, differentiation of the two subspecies is essential to the implementation of efficient CFV control and eradication programs. We have developed LAMP and duplex PCR assays for rapid and simple detection of CFV. The LAMP assay correctly detected 7 CFV strains and did not detect 53 CFF, 35 non‐fetus Campylobacter and 25 non‐Campylobacter strains. The PCR assay successfully differentiated the two subspecies. The LAMP and PCR assays were faster than conventional biochemical assays, requiring for detection less than 50 min and less than 4 hr, respectively, from the beginning of DNA extraction from a single colony on blood agar to final determination. Our LAMP and PCR assays are rapid and practical tools for detection of CFV.  相似文献   

6.
The use of pathogen-free plant material is the main strategy for controlling bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. However, detection and isolation of this pathogen from seeds before field or greenhouse cultivation is difficult when the bacterium is at low concentration and associated microbiota are present. Immunomagnetic separation (IMS), based on the use of immunomagnetic beads (IMBs) coated with specific antibodies, was used to capture C. michiganensis subsp. michiganensis cells, allowing removal of non-target bacteria from samples before plating on non-selective medium. Different concentrations of IMBs and of two antisera were tested, showing that IMS with 10(6)IMBs/ml coated with a polyclonal antiserum at 1/3200 dilution recovered more than 50% of target cells from initial inocula of 10(3) to 10(0)CFU/ml. Threshold detection was lower than 10CFU/ml even in seed extracts containing seed debris and high populations of non-target bacteria. The IMS permitted C. michiganensis subsp. michiganensis isolation from naturally infected seeds with higher sensitivity and faster than direct isolation on the semiselective medium currently used and could become a simple viable system for routinely testing tomato seed lots in phytosanitary diagnostic laboratories.  相似文献   

7.
Real-time quantitative PCR assays were developed for the absolute quantification of different groups of bacteria in pure cultures and in environmental samples. 16S rRNA genes were used as markers for eubacteria, and genes for extracellular peptidases were used as markers for potentially proteolytic bacteria. For the designed 16S rDNA TaqMan assay, specificity of the designed primer-probe combination for eubacteria, a high amplification efficiency over a wide range of starting copy numbers and a high reproducibility is demonstrated. Cell concentrations of Bacillus cereus, B. subtilis and Pseudomonas fluorescens in liquid culture were monitored by TaqMan-PCR using the 16S rDNA target sequence of Escherichia coli as external standard for quantification. Results agree with plate counts and microscopic counts of DAPI stained cells. The significance of 16S rRNA operon multiplicity to the quantification of bacteria is discussed.Furthermore, three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria. Since high degeneracy of the probes did not allow accurate quantification, SybrGreen was used instead of molecular probes to visualize and quantify PCR products during PCR. The correlation between fluorescence and starting copy number was of the same high quality as for the 16S rDNA TaqMan assay for all the three peptidase gene classes. The detected amount of genes for neutral metallopeptidase of B. cereus, for subtilisin of B. subtilis and for alkaline metallopeptidase of P. fluorescens corresponded exactly to the numbers of bacteria investigated by the 16S rDNA targeting assay.The developed assays were applied for the quantification of bacteria in soil samples.  相似文献   

8.
Nogva HK  Drømtorp SM  Nissen H  Rudi K 《BioTechniques》2003,34(4):804-8, 810, 812-3
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Even so, the lack of differentiation between DNA from viable and dead cells is one of the major challenges for diagnostic DNA-based methods. Certain nucleic acid-binding dyes can selectively enter dead bacteria and subsequently be covalently linked to DNA. Ethidium monoazide (EMA) is a DNA intercalating dye that enters bacteria with damaged membranes. This dye can be covalently linked to DNA by photoactivation. Our goal was to utilize the irreversible binding of photoactivated EMA to DNA to inhibit the PCR of DNA from dead bacteria. Quantitative 5'-nuclease PCR assays were used to measure the effect of EMA. The conclusion from the experiments was that EMA covalently bound to DNA inhibited the 5'-nuclease PCR. The maximum inhibition of PCR on pure DNA cross-linked with EMA gave a signal reduction of approximately -4.5 log units relative to untreated DNA. The viable/dead differentiation with the EMA method was evaluated through comparison with BacLight staining (microscopic examination) and plate counts. The EMA and BacLight methods gave corresponding results for all bacteria and conditions tested. Furthermore, we obtained a high correlation between plate counts and the EMA results for bacteria killed with ethanol, benzalkonium chloride (disinfectant), or exposure to 70 degrees C. However, for bacteria exposed to 100 degrees C, the number of viable cells recovered by plating was lower than the detection limit with the EMA method. In conclusion, the EMA method is promising for DNA-based differentiation between viable and dead bacteria.  相似文献   

9.
Following detection of putative Francisella species in aerosol samples from Houston, Texas, we surveyed soil and water samples from the area for the agent of tularemia, Francisella tularensis, and related species. The initial survey used 16S rRNA gene primers to detect Francisella species and related organisms by PCR amplification of DNA extracts from environmental samples. This analysis indicated that sequences related to Francisella were present in one water and seven soil samples. This is the first report of the detection of Francisella-related species in soil samples by DNA-based methods. Cloning and sequencing of PCR products indicated the presence of a wide variety of Francisella-related species. Sequences from two soil samples were 99.9% similar to previously reported sequences from F. tularensis isolates and may represent new subspecies. Additional analyses with primer sets developed for detection and differentiation of F. tularensis subspecies support the finding of very close relatives to known F. tularensis strains in some samples. While the pathogenicity of these organisms is unknown, they have the potential to be detected in F. tularensis-specific assays. Similarly, a potential new subspecies of Francisella philomiragia was identified. The majority of sequences obtained, while more similar to those of Francisella than to any other genus, were phylogenetically distinct from known species and formed several new clades potentially representing new species or genera. The results of this study revise our understanding of the diversity and distribution of Francisella and have implications for tularemia epidemiology and our ability to detect bioterrorist activities.  相似文献   

10.
A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of selected Aspergillus, Penicillium and Paecilomyces species. The assays varied in specificity from species or subspecies to closely related species groups, subject to the amount of nucleotide sequence variation in the different organisms. A generic assay for all target species of Aspergillus, Penicillium and Paecilomyces was also developed and tested. Using a previously reported DNA extraction method, estimated conidia detection limits for target species ranged from less than one to several hundred per sample for the different assays. Conidia detection limits for non-target species were at least 1,000 fold higher in nearly all instances. The assays were used to analyze ten HVAC dust samples from different sources around the US. Total quantities of Aspergillus, Penicillium and Paecilomyces conidia in the samples, determined by the generic assay and the summed totals from the specific assays, were in general agreement, suggesting that all of the numerically dominant species in the samples were accounted for by the specific assays. QPCR analyses of these samples after spiking them with selected target organisms indicated that the enumeration results were within approximately a one-half log range of the expected values 95% of the time. Evidence is provided that the commonly used practices of enumerating Aspergillus and Penicillium as a single group or only by genus can be misleading in understanding the indoor populations of these organisms and their potential health risks.  相似文献   

11.
A modified NaOH alkaline boiling procedure using a mixture of lysozyme and proteases combined with minimized TRIS/HCl/BSA buffer volume was applied to extract amplifyable DNA from the two quarantine bacteria Ralstonia (Pseudomonas) solanacearum and Clavibacter michiganensis ssp. sepedonicus artificially added to potato tuber extracts of a low and a high starch potato variety. A PCR detection threshold of 104−105 colony forming units per ml extract of each quarantine bacterium was obtained by using the two potato varieties, the high starch potato variety resulting in a lower detection threshold.
Similar sensitivities could be obtained from potato tubers naturally infected with both quarantine bacteria. When comparing a published DNA extraction procedure suitable for Clavibacter michiganensis ssp. sepedonicus with the alkaline extraction the latter is much faster and simpler with similar detection thresholds and representing an inexpensive method to obtain suitable template DNA for routine PCR tests.  相似文献   

12.
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible.  相似文献   

13.
AIMS: We developed, optimized and tested two novel PCR assays specific for Salmonella enterica subspecies enterica serovar Infantis. METHODS AND RESULTS: The fljB gene was chosen as the target sequence. Primers were designed on a consensus sequence built by sequencing the fljB gene of five genetically unrelated Hungarian S. Infantis strains and using sequence data from the GenBank (http://www.ncbi.nih.gov). Two alternative assays were designed, which share the reverse primer. Both proved to be highly specific to S. Infantis, neither reacted with 42 other nontyphoidal serovariants tested. The detection limit of the assays was determined to be 10(5) CFU ml(-1) from pure culture, and 10(6) CFU g(-1) from artificially spiked chicken faeces samples. CONCLUSIONS: Although the detection limit is rather high to allow for using them for direct detection, the assays may be useful in identification of S. Infantis both for diagnostic and for research purposes. SIGNIFICANCE AND IMPACT OF THE STUDY: The described PCR assays allow for the correct identification of S. Infantis even when traditional serotyping methods fail because lack of expression of flagellar antigens.  相似文献   

14.
The insertion site of a transposon mutant of Clavibacter michiganensis subsp. michiganensis NCPPB382 was cloned and found to be located in the gene tomA encoding a member of the glycosyl hydrolase family 10. The intact gene was obtained from a cosmid library of C. michiganensis subsp. michiganensis. The deduced protein TomA (543 amino acids, 58 kDa) contains a predicted signal peptide and two domains, the N-terminal catalytic domain and a C-terminal fibronectin III-like domain. The closest well-characterized relatives of TomA were tomatinases from fungi involved in the detoxification of the tomato saponin alpha-tomatine which acts as a growth inhibitor. Growth inhibition of C. michiganensis subsp. michiganensis by alpha-tomatine was stronger in the tomA mutants than in the wild type. Tomatinase activity assayed by deglycosylation of alpha-tomatine to tomatidine was demonstrated in concentrated culture supernatants of C. michiganensis subsp. michiganensis. No activity was found with the tomA mutants. However, neither the transposon mutant nor a second mutant constructed by gene disruption was affected in virulence on the tomato cv. Moneymaker.  相似文献   

15.
Since 1991 more than 30 PCR protocols have been published, which show a potential to replace the current microscopic detection method for Cryptosporidium parvum in environmental samples and food. This review provides a synoptic comparison of these protocols with respect to the following features: isolation and purification of oocysts from tested matrices, elimination of free DNA, viability and infectivity assessment, release of nucleic acids, nucleic acid extraction, type of PCR (PCR, RT-PCR, internal-standard-PCR, in situ PCR, TaqMan-PCR), primary product detection, additional specificity control, secondary product detection, reported sensitivity, cross-reaction with other Cryptosporidium species, and target and sequence information such as amplicon length, primer sequences, multiple copy target, presence of strain-specific differences in the amplicon, GenBank accession numbers and gene function. The results demonstrate that problems like PCR inhibition, viability assessment, and the requirement of an extreme sensitivity have been solved. PCR assays would be most valuable to control presence-absence standards in defined matrix volumes, and the setup of such standards would very much contribute to a rapid introduction of this awaited technology into routine monitoring of environmental, water and food samples, and to a further standardization of the various protocols. It can be expected that satisfactory solutions for quantification will be found for a growing number of PCR-based assays. Systematic field evaluation and interlaboratory studies will complement our present knowledge of these methods in the near future. Received 5 May 1998/ Accepted in revised form 7 September 1998  相似文献   

16.
In this paper we describe transformation of Clavibacter michiganensis subsp. sepedonicus, the potato ring rot bacterium, with plasmid vectors. Three of the plasmids used, pDM100, pDM302, and pDM306, contain the origin of replication from pCM1, a native plasmid of C. michiganensis subsp. michiganensis. We constructed two new cloning vectors, pHN205 and pHN216, by using the origin of replication of pCM2, another native plasmid of C. michiganensis subsp. michiganensis. Plasmids pDM302, pHN205, and pHN216 were stably maintained without antibiotic selection in various strains of C. michiganensis subsp. sepedonicus. We observed that for a single plasmid, different strains of C. michiganensis subsp. sepedonicus showed significantly different transformation efficiencies. We also found unexplained strain-to-strain differences in stability with various plasmid constructions containing different arrangements of antibiotic resistance genes and origins of replication. We examined the effect of a number of factors on transformation efficiency. The best transformation efficiencies were obtained when C. michiganensis subsp. sepedonicus cells were grown on DM agar plates, harvested during the early exponential growth phase, and used fresh (without freezing) for electroporation. The maximal transformation efficiency obtained was 4.6 x 10(4) CFU/microgram of pHN216 plasmid DNA. To demonstrate the utility of this transformation system, we cloned a beta-1,4-endoglucanase-encoding gene from C. michiganensis subsp. sepedonicus into pHN216. When this construction, pHN216:C8, was electroporated into competent cells of a cellulase-deficient mutant, it restored cellulase production to almost wild-type levels.  相似文献   

17.
Bivalve molluscs concentrate Cryptosporidium oocysts from fecal-contaminated aquatic environments and are therefore useful in monitoring water quality. A real-time TaqMan polymerase chain reaction (PCR) system was developed to allow for large scale quantitative detection of Cryptosporidium spp. in mussels (Mytilus californianus). The TaqMan sensitivity and specificity were compared to conventional PCR and direct immunofluorescent antibody (DFA) assays, with and without immunomagnetic separation (IMS), to identify the best method for parasite detection in mussel hemolymph, gill washings and digestive glands. TaqMan PCR and two conventional PCR systems all detected 1 or more oocysts spiked into 1 ml hemolymph samples. The minimum oocyst detection limit in spiked 5 ml gill wash and 1 g digestive gland samples tested by TaqMan PCR and DFA was 100 oocysts, with a 1 log(10) improvement when samples were first processed by IMS. For tank exposed mussels, TaqMan and conventional PCR methods detected C. parvum in <5% of hemolymph samples. No gill washings from these same mussels tested positive by TaqMan PCR or DFA analysis even with IMS concentration. All methods detected the highest prevalence of C. parvum-positive samples in digestive gland tissues of exposed mussels. In conclusion, the most sensitive method for the detection of C. parvum in oocyst-exposed mussels was IMS concentration with DFA detection: 80% of individual and 100% of pooled digestive gland samples tested positive. TaqMan PCR was comparable to conventional PCR for detection of C. parvum oocysts in mussels and additionally allowed for automated testing, high throughput, and semi-quantitative results.  相似文献   

18.
Babesia canis vogeli is known to cause disease in dogs in Australia, and the rapid detection of various subspecies would enable effective treatment and management. A 21 bp oligonucleotide, "Bab-f" was proposed for the production of larger PCR products with high species specificity that would enable effective sequence analyses to yield subspecies identification. The new forward primer when paired with a previously reported "Babesia common" reverse primer generated a 394 bp product which was successfully amplified and provided subspecies differentiation by sequence analyses. Specificity and sensitivity were reported at 100% on a cohort of 55 dogs.  相似文献   

19.
玉米内州萎蔫病菌免疫学检测方法的建立   总被引:1,自引:0,他引:1  
以玉米内州萎蔫病菌单抗(4H4和4G12)为基础,纯化抗体后,进行亚类鉴定、效价及特异性测定。比较间接ELISA和双单抗夹心ELISA(DAS-ELISA)的检测灵敏度,并应用于玉米种子中萎蔫病菌的检测。结果表明,两株单克隆抗体(0.4g/L)效价均可达1:256000,亚类鉴定结果分别为IgG2a和IgG2b,轻链均为K链。与供试的16株非目标细菌均无交叉反应。DAS-ELISA对萎蔫病菌种子悬浮液的检测灵敏度为1.0×109CFU/L,在此基础上建立了灵敏、特异的玉米内州萎蔫病菌双单抗DAS-ELISA检测方法。  相似文献   

20.
Six previously published polymerase chain reaction (PCR) assays each targeting different genes were used to speciate 116 isolates previously identified as Campylobacter jejuni using routine microbiological techniques. Of the 116 isolates, 84 were of poultry origin and 32 of human origin. The six PCR assays confirmed the species identities of 31 of 32 (97%) human isolates and 56 of 84 (67%) poultry isolates as C. jejuni. Twenty eight of 84 (33%) poultry isolates were identified as Campylobacter coli and the remaining human isolate was tentatively identified as Campylobacter upsaliensis based on the degree of similarity of 16S rRNA gene sequences. Four of six published PCR assays showed 100% concordance in their ability to speciate 113 of the 116 (97.4%) isolates; two assays failed to generate a PCR product with four to 10 isolates. A C. coli-specific PCR identified all 28 hippuricase gene (hipO)-negative poultry isolates as C. coli although three isolates confirmed to be C. jejuni by the remaining five assays were also positive in this assay. A PCR-restriction fragment length polymorphism assay based on the 16S rRNA gene was developed, which contrary to the results of the six PCR-based assays, identified 28 of 29 hipO-negative isolates as C. jejuni. DNA sequence analysis of 16S rRNA genes from four hipO-negative poultry isolates showed they were almost identical to the C. jejuni type strain 16S rRNA sequences ATCC43431 and ATCC33560 indicating that assays reliant on 16S rRNA sequence may not be suitable for the differentiation of these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号