首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow visualization and wall pressure measurements were made in a polyurethane cast of a cadaver coronary artery with a significant "s" shaped reverse curvature. A sucrose solution was used to simulate the kinematic viscosity of blood, with flow rates in the physiologic range. Flow visualization demonstrated significant secondary flow patterns in the wall vicinity, which increased with increasing Reynolds number. Random dye dispersion was observed at a Reynolds number of about 400, but not at 200. Dye filament patterns in the transition between the first and second curved region were predominantly influenced by the second curved region at lower Reynolds numbers, and by the first curved region at higher Re. Local wall pressure measurements demonstrated a significant centrifugal effect with large radial pressure differences across the casting. Flow resistances for the casting were considerably greater than reference Poiseuille flow values, and increased further with pulsatile flow.  相似文献   

2.
T V How  R A Black 《Biorheology》1987,24(3):337-351
Pressure drop and pressure gradient were measured in steady Newtonian and non-Newtonian flow through tapered tubes having angles of taper, alpha, between 0.5 degree and 1.25 degrees. Aqueous solutions of polyacrylamide, characterized as power law fluids, were used for the non-Newtonian flow measurements. These solutions had power law parameters similar in magnitude to those of blood. The pressure drop-flow rate data compared well with the predictions of a semi-empirical flow model over a large range of flow rates (Re alpha up to 10 for Newtonian flow and 5.7 for non-Newtonian flow). The pressure gradient increased with distance, z, into the taper as the radius decreased. The linear relationship between pressure gradient and z, derived by Oka (Biorheology, 10, 207-212, 1973) was found to be valid only when alpha z was small. For the tapered tubes examined here, agreement was confined to the region near the inlet. If higher order terms in alpha z were taken into account the agreement was extended further into the taper. However, under higher flow conditions, when the inertial losses are not negligible, the semi-empirical model provides much better estimates of pressure gradient.  相似文献   

3.
The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (alpha), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O(2) and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0< or =A< or =0.75, alpha=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and alpha are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O(2) feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying alpha for the ranges investigated. The effect of pulsatility on Sh is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.  相似文献   

4.
Characteristics of pressure loss (ΔP) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the ΔP coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re<100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways.  相似文献   

5.
Replicating deoxyribonucleic acid (DNA) molecules of plasmid RSF1040, a deletion mutant of the conjugative R plasmid R6K, appear in the electron microscope as partially supercoiled structures with two open circular branches of equal size, although open structures with three branches, two branching points and no supercoiled regions (theta structures) were also found at a lower frequency. The partially supercoiled molecules sediment more rapidly than native covalently closed circular DNA in neutral sucrose gradients and band at a position intermediate between covalently closed circular and open circular DNA in CsClethidium bromide gradients. Electron microscope measurements of the linear EcoRI-treated replicative intermediates indicate that replication can be initiated at two sites (origins) on the plasmid DNA molecule located at about 23% (alpha) and 39% (beta) of the total genome length from an EcoRI end designated arbitrarily as the "left-hand" end of the molecule. The overall replication of RSF1040 is asymmetrically bidirectional. Replication from the alpha origin proceeds first to the "right" to a unique termination site located some 55% of the total genome length from the left-hand end of the molecule. At this point replication proceeds from the alpha origin to the "left" (i.e., opposite to the original direction of replication) until replication of the molecule is completed. Replication also proceeds from the beta origin asymmetrically to the unique terminus site.  相似文献   

6.
We measured the energy dissipation associated with large-amplitude periodic flow through airway bifurcation models. Each model consisted of a single asymmetric bifurcation with a different branching angle and area ratio, with each branch terminated into an identical elastic load. Sinusoidal volumetric oscillations were applied at the parent duct so that the upstream Reynolds number (Re) varied from 30 to 77,000 and the Womersley parameter (alpha) from 4 to 30. Pressures were measured continuously at the parent duct and at both terminals, and instantaneous branch flow rates were calculated. Time-averaged energy dissipation in the bifurcation was computed from an energy budget over a control volume integrated over a cycle and was expressed as a friction factor, F. We found that when tidal volume was small [ratio of tidal volume to resident (dead space) volume, VT/VD less than 1], F was independent of branching angle and fell with increasing alpha and VT/VD. When tidal volume was large (VT/VD greater than 1), F increased with increasing branching angle and varied less strongly with alpha and VT/VD. No simple benchmark flow represented the data well over the entire experimental range. This study demonstrates that only two nondimensional parameters, alpha and VT/VD, are necessary and are sufficient to describe time-averaged energy dissipation in a given bifurcation geometry during sinusoidal flow.  相似文献   

7.
The influence of flow characteristics and gas physical properties on nasal resistance (NR) is difficult to ascertain with traditional rhinomanometric methods because the respiratory airflows used in these methods are largely uncontrolled. As an alternative, we used a novel method of rhinomanometry in which an externally generated flow is passed through the nasal passage via a mouthpiece. The transnasal pressure-flow relationships for both quasi-steady and oscillating flows and with different gases were obtained in five healthy adults with this method. For quasi-steady nasal flows the dimensionless pressure losses were largely independent of physical properties of the gas and a function of the Reynolds number (Re) of the flow. Values of NR for quasi-steady flows were largely independent of flow direction for Re up to roughly 3,000 in all five subjects and for Re up to roughly 19,000 in two of the five subjects. Airway collapse occurred in two subjects at Re greater than 3,000, suggesting that the nonrigid segments of the nasal passage contribute to the intersubject variations in NR at high flow rates. Pressure losses associated with oscillating flows measured at frequencies between 1 and 16 Hz were similar to steady flow losses provided that Re was less than roughly 3,000. For Re greater than 3,000 the oscillating flow resistances were affected by the phasic redistribution of flow into compliant segments of the nasal passage. These results indicate that, for flow rates and harmonic frequencies associated with breathing at rest, the nasal passage behaves as a rigid rough-walled pipe in which pressure losses are largely determined by forces relating to viscous friction and convective accelerations.  相似文献   

8.
Convective fluid motion through artery walls aids in the transvascular transport of macromolecules. Although many measurements of convective filtration have been reported, they were all obtained under constant transmural pressure. However, arterial pressure in vivo is pulsatile. Therefore, experiments were designed to compare filtration under steady and pulsatile pressure conditions. Rabbit carotid arteries were cannulated and excised from male New Zealand White rabbits anesthetized with pentobarbitol sodium (30 mg/kg i.v. administered). Hydraulic conductance was measured in cannulated excised rabbit carotid arteries at steady pressure. Next, pulsatile pressure trains were applied within the same vessels, and, simultaneously, arterial distension was monitored using Optical coherence tomography (OCT). For each pulse train, the volume of fluid lost through filtration was measured (subtracting volume change due to residual distension) and compared with that predicted from steady pressure measurements. At 60- and 80-mmHg baseline pressures, the experimental filtration volumes were significantly increased compared with those predicted for steady pressure (P < 0.05). OCT demonstrated that the excess fluid volume loss was significantly greater than the volume that would be lost through residual distension (P < 0.05). After 30 s, the magnitude of the excess of fluid loss was reduced. These results suggest that sudden onset of pulsatile pressure may cause changes in arterial interstitial hydration.  相似文献   

9.
Membrane viscoelasticity.   总被引:10,自引:3,他引:7       下载免费PDF全文
In this paper, we develop a theory for viscoelastic behavior of large membrane deformations and apply the analysis to the relaxation of projections produced by small micropipette aspiration of red cell discocytes. We show that this relaxation is dominated by the membrane viscosity and that the cytoplasmic and extracellular fluid flow have negligible influence on the relaxation time and can be neglected. From preliminary data, we estimate the total membrane "viscosity" when the membrane material behaves in an elastic solid manner. The total membrane viscosity is calculated to be 10(-3) dyn-s/cm, which is a surface viscosity that is about three orders of magnitude greater than the surface viscosity of lipid membrane components (as determined by "fluidity" measurements). It is apparent that the lipid bilayer contributes little to the fluid dynamic behavior of the whole plasma membrane and that a structural matrix dominates the viscous dissipation. However, we show that viscous flow in the membrane is not responsible for the temporal dependence of the isotropic membrane tension required to produce lysis and that the previous estimates of Rand, Katchalsky, et al., for "viscosity" are six to eight orders of magnitude too large.  相似文献   

10.
陈国鹏  赵文智 《生态学杂志》2016,27(6):1870-1876
新陈代谢速率是植物最基本的生物学速率,与地表植被的水碳代谢过程密切相关.表征代谢速率及其替代指标(如叶生物量等)与个体大小间相关生长关系的代谢指数是生态学研究的一个热点,WBE模型论证的3/4恒定代谢指数最为经典,但也饱受争议.本研究以毛乌素沙地南缘沙柳为对象,检验了WBE模型的可用性,揭示代谢指数随丛生枝生长发育的变化规律.结果表明: 基于叶生物量和茎叶生物量估计的沙柳丛生枝代谢指数α为0.97,显著大于WBE模型的恒定指数3/4;分支半径指数1/a和分支长度指数1/b分别为2.67和3.83,均显著大于理论值2.0和3.0.分龄级估计的丛生枝分支半径指数和分支长度指数分别为2.64~3.24和2.86~4.30,各龄级代谢指数的估计值和计算值分别为1.01~1.29和0.94~1.13,龄级差异均不显著.斜率异质性检验表明,不同龄级的丛生枝共有代谢指数估计值1.08和计算值1.00、分支半径指数2.84和分支长度指数3.35,均显著大于理论值.在各龄级丛生枝共有代谢指数1.08下,代谢常数在y轴上的负向漂移幅度随龄级增加而显著增大.尽管枝龄未引起沙柳丛生枝代谢指数的显著变化,但在给定大小的枝条上,大龄枝较低龄枝的代谢活性下降明显.  相似文献   

11.
The modulation of microvascular blood flow by vasomotion in the individual vessels of a simple vascular network was simulated by means of a network thermodynamic model. The flow is driven under a pulsating pressure through two arcades of branching vasoactive arterioles into a passive resistance representing the capillary and venular beds. Each vessel was assumed to have the capability of decreasing rhythmically the local diameter over a short section by a specified fraction of the maximum value and to change the average diameter along its total length in response to alterations in intraluminal pressure. Blood was assumed to exhibit a simple linear viscous flow resistance. Alterations in flow rate and distribution through the network were determined as a function of the magnitude and frequency of vasomotion within the individual arterioles supplying blood to the microvascular bed. Specific cases are shown to illustrate how blood flow can be influenced by the patterns of vasomotion within the network.  相似文献   

12.
Pressure versus fluid spacing relations have been obtained for sphingomyelin bilayers in the gel phase and equimolar sphingomyelin/cholesterol in the liquid-crystalline phase by the use of X-ray diffraction analysis of osmotically stressed aqueous dispersions and oriented multilayers. For interbilayer separations in the range of 5-20 A, the repulsive hydration pressure decays exponentially with increasing fluid spacing. The decay length (lambda) of this repulsive pressure is about 2 A for both bovine brain and N-tetracosanoylsphingomyelin, similar to that previously found for phosphatidylcholine bilayers. However, both the magnitude of the hydration pressure and the magnitude of the dipole potential (V) measured for monolayers in equilibrium with liposomes are considerably smaller for sphingomyelin than for either gel or liquid-crystalline phosphatidylcholine bilayers. Addition of equimolar cholesterol increases both the magnitude of the hydration pressure and the dipole potential. These data suggest that the magnitude of the hydration pressure depends on the electric field at the interface as given by (V/lambda)2. For sphingomyelin bilayers, there is a sharp upward break in the pressure-fluid spacing relation at an interbilayer spacing of about 5 A, indicating the onset of steric hindrance between the head groups of apposing bilayers.  相似文献   

13.
The inspiratory flow characteristics in a three-generation lung airway have been numerically investigated using a control volume method to solve the fully three-dimensional laminar Navier-Stokes equations. The three-generation airway is extracted from the fifth to seventh branches of the model of Weibel (Morphometry of the Human Lung, Academic Press, New York, Springer, Berlin, 1963) with in-plane and 90 degrees off-plane configurations. Computations are carried out in the Reynolds number range of 200-1600, corresponding to mouth-air breathing rates ranging from 0.27 to 2.16l/s, or an averaged height of a man breathing from quiet to vigorous state. Particular attention is paid to establishing relations between the Reynolds number and the overall flow characteristics, including flow patterns and pressure drop. The ratio of airflow rate through the medial branch to that of the lateral branch for an in-plane airway increases as Re(0.227). However, the total pressure drop coefficient varies as Re(-0.497) for an in-plane airway and as Re(-0.464) for an off-plane airway. These pressure drop results are in good agreement with the experimentally measured behavior of Re(-0.5) and are more accurate than the numerically determined behavior of Re(-0.61) assuming the airways to be approximated by two-dimensional channels.  相似文献   

14.
Biofilm detachment mechanisms in a liquid-fluidized bed   总被引:10,自引:0,他引:10  
Bed fluidization offers the possibility of gaining the advantages of fixed-film biological processes without the disadvantage of pore clogging. However, the biofilm detachment rate, due to hydrodynamics and particle-to-particle attrition, is very poorly understood for fluidized-bed biofilm processes. In this work, a two-phase fluidized-bed biofilm was operated under a constant surface loading (0.09 mg total organic carbon/cm(2) day) and with a range of bed height (H), fluid velocities (U), and support-particle concentrations (C(p)). Direct measurements were made for the specific biofilm loss rate coefficient (b(s))and the total biofilm accumulation (X(f)L(f)). A hydrodynamic model allowed independent determination of the biofilm density (X(f)), biofilm thickness (L(f)), liquid shear stress (tau), and Reynolds number (Re). Multiple regression analysis of the results showed that increased particle-to-particle attrition, proportional to C(p) and increased turbulence, described by Re, caused the biofilms to be denser and thinner. The specific detachment rate coefficient (b(s)) increased as C(p) and Re increased. Almost all of the 6, values were larger than predicted by a previous model derived for smooth biofilms on a nonfluidized surface. Therefore, the turbulence and attrition of bed fluidization appear to be dominant detachment mechanisms.  相似文献   

15.
The structure of the branching site of poly(ADP-ribose) was determined as O-alpha-D-ribofuranosyl-(1"' leads to 2")-O-alpha-D-ribofuranosyl-(1" leads to 2')-adenosine-5',5",5"'-tris(phosphate) by gas chromatography, mass spectrometry, and 1H-NMR measurements. Thus the structures of all the ribose-ribose linkages known in poly(ADP-ribose) are uniformly alpha(1 leads to 2)glycosidic bond. This indicates that branching ADP-ribosylation and elongating ADP-ribosylation of poly(ADP-ribose) synthesis are catalyzed by similar alpha(1 leads to 2)-specific ADP-ribosyl transferases or the same enzyme. Poly(ADP-ribose) glycohydrolase, which specifically hydrolyzes the ribose-ribose bonds of poly(ADP-ribose), also cleaves the ribose-ribose-ribose bonds at the site of branching.  相似文献   

16.
Radioimmunoassay measurements of prostaglandins (PGs) E2, F2 alpha, 6-keto-PGF1 alpha and thromboxane (Tx) B2 in 24 h urine specimens from a male and a female healthy volunteer on several consecutive days revealed a dramatic increase of PGE2, PGF2 alpha, 6-keto-PGF1 alpha on days, upon which they had sexual intercourse; only TxB2 remained stable. Furthermore, the PGE2/PGF2 alpha ratio rose to values greater than 0.5 on days with sexual intercourse. This was found to be due to contamination of the urine samples by seminal fluid. Two 24 h urine samples from each of 26 healthy male and female volunteers (HV) revealed higher (p less than 0.01) mean PGE2 and PGF2 alpha values in males than in females. The results show that the interpretation of the urinary PG excretion as a measure of renal PG synthesis should be considered carefully, and that a PGE2/PGF2 alpha ratio greater than 0.5 indicates probable seminal contamination of urine.  相似文献   

17.
Branch geometry in Cornus kousa (Cornaceae): computer simulations   总被引:2,自引:0,他引:2  
Computer simulations similar to actual trees were constructed using simple branching rules. Branch orientation with respect to the direction of gravity was a fundamental consideration. In Cornus kousa BUERG. ex HANCE, several types of branches develop from winter buds, varying from orthotropic shoots to plagiotropic ones. Based on actual observations and measurements of branching structures with a wide range of orientations, we made a flexible geometrical model consisting of five forking branches that varied in outgrowth depending on the direction of the shoot with respect to gravity. Repetition of the branching by computer generated a realistic tree pattern, which was close to the shape of a young C. kousa tree. Reproductive shoots seem to be under a branching rule that was a modification of vegetative branching, although the reproductive branch size was considerably smaller than the vegetative one, and reproductive branching was bifurcated instead of five-forked. We conclude that all branchings in orthotropic and plagiotropic shoots in the vegetative phase and shoots in the reproductive phase are formed under the same branching rule, but each has different parameter values.  相似文献   

18.
Flow visualization and wall pressure measurements were made in a smooth reverse curvature model that conformed to the gentle "s" shape of a left femoral artery angiogram of a patient in a clinical trial. Observed lesion localization at the inner (lesser) curvatures appeared to be associated with secondary flows in the wall vicinity directed toward the inner curvatures that tended to reverse direction in the flow entering the reverse curvature region. Moderate flow resistance increases of about 20 percent above the Poiseuille flow relation were found at the higher physiological Reynolds numbers Re above about 600-700 and thus Dean numbers for steady flow. For pulsatile flow simulation, flow resistances did not increase up to the largest Re of 470 tested. Apparently, the large variations in velocity during the cardiac cycle disrupted the stronger secondary flow patterns observed at the higher Reynolds numbers for steady flow.  相似文献   

19.
Recent epidemiological studies suggest a link between transport magnetic fields (MF) and certain adverse health effects. We performed measurements in workplaces of engineers on Russian DC and Swiss AC powered (16.67 Hz) electric trains using a computer based waveform capture system with a 200 Hz sampling rate. MF in DC and AC trains show complex combinations of static and varying components. The most probable levels of quasistatic MF (0.001-0.03 Hz) were in the range 40 microT. Maximum levels of 120 microT were found in DC powered locomotives. These levels are much higher than the geomagnetic field at the site of measurements. MF encountered both in DC and AC powered rail systems showed irregular temporal variability in frequency composition and amplitude characteristics across the whole frequency range studied (0-50 Hz); however, more than 90% of the magnetic field power was concentrated in frequencies 相似文献   

20.
The actin filament network at the leading edge of motile cells relies on localized branching by Arp2/3 complex from "mother" filaments growing near the plasma membrane. The nucleotide bound to the mother filaments (ATP, ADP and phosphate, or ADP) may influence the branch dynamics. To determine the effect of the nucleotide bound to the subunits of the mother filament on the formation and stability of branches, we compared the time courses of actin polymerization in bulk samples measured using the fluorescence of pyrene actin with observations of single filaments by total internal reflection fluorescence microscopy. Although the branch nucleation rate in bulk samples was nearly the same regardless of the nucleotide on the mother filaments, we observed fewer branches by microscopy on ADP-bound filaments than on ADP-P(i)-bound filaments. Observation of branches in the microscope depends on their binding to the slide. Since the probability that a branch binds to the slide is directly related to its lifetime, we used counts of branches to infer their rates of dissociation from mother filaments. We conclude that the nucleotide on the mother filament does not affect the initial branching event but that branches are an order of magnitude more stable on the sides of new ATP- or ADP-P(i) filaments than on ADP-actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号